找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity and Substructures of Hom; Friedrich Kasch,Adolf Mader Book 2009 Birkh?user Basel 2009 Abelian group.algebra.domain decompositio

[復(fù)制鏈接]
查看: 29446|回復(fù): 44
樓主
發(fā)表于 2025-3-21 18:56:52 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Regularity and Substructures of Hom
編輯Friedrich Kasch,Adolf Mader
視頻videohttp://file.papertrans.cn/826/825562/825562.mp4
概述Readable text with new concepts opening new avenues for research.Old and numerous new results in self-contained form.Results never published in book form.Extension of the well-known and important conc
叢書(shū)名稱(chēng)Frontiers in Mathematics
圖書(shū)封面Titlebook: Regularity and Substructures of Hom;  Friedrich Kasch,Adolf Mader Book 2009 Birkh?user Basel 2009 Abelian group.algebra.domain decompositio
描述Regular rings were originally introduced by John von Neumann to clarify aspects of operator algebras ([33], [34], [9]). A continuous geometry is an indecomposable, continuous, complemented modular lattice that is not ?nite-dimensional ([8, page 155], [32, page V]). Von Neumann proved ([32, Theorem 14. 1, page 208], [8, page 162]): Every continuous geometry is isomorphic to the lattice of right ideals of some regular ring. The book of K. R. Goodearl ([14]) gives an extensive account of various types of regular rings and there exist several papers studying modules over regular rings ([27], [31], [15]). In abelian group theory the interest lay in determining those groups whose endomorphism rings were regular or had related properties ([11, Section 112], [29], [30], [12], [13], [24]). An interesting feature was introduced by Brown and McCoy ([4]) who showed that every ring contains a unique largest ideal, all of whose elements are regular elements of the ring. In all these studies it was clear that regularity was intimately related to direct sum decompositions. Ware and Zelmanowitz ([35], [37]) de?ned regularity in modules and studied the structure of regular modules. Nicholson ([26])
出版日期Book 2009
關(guān)鍵詞Abelian group; algebra; domain decomposition; homomorphism; module category; regular homomorphism
版次1
doihttps://doi.org/10.1007/978-3-7643-9990-0
isbn_softcover978-3-7643-9989-4
isbn_ebook978-3-7643-9990-0Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightBirkh?user Basel 2009
The information of publication is updating

書(shū)目名稱(chēng)Regularity and Substructures of Hom影響因子(影響力)




書(shū)目名稱(chēng)Regularity and Substructures of Hom影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Regularity and Substructures of Hom網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Regularity and Substructures of Hom網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Regularity and Substructures of Hom被引頻次




書(shū)目名稱(chēng)Regularity and Substructures of Hom被引頻次學(xué)科排名




書(shū)目名稱(chēng)Regularity and Substructures of Hom年度引用




書(shū)目名稱(chēng)Regularity and Substructures of Hom年度引用學(xué)科排名




書(shū)目名稱(chēng)Regularity and Substructures of Hom讀者反饋




書(shū)目名稱(chēng)Regularity and Substructures of Hom讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:16:26 | 只看該作者
https://doi.org/10.1007/978-3-7643-9990-0Abelian group; algebra; domain decomposition; homomorphism; module category; regular homomorphism
板凳
發(fā)表于 2025-3-22 01:42:46 | 只看該作者
978-3-7643-9989-4Birkh?user Basel 2009
地板
發(fā)表于 2025-3-22 06:38:00 | 只看該作者
Regularity and Substructures of Hom978-3-7643-9990-0Series ISSN 1660-8046 Series E-ISSN 1660-8054
5#
發(fā)表于 2025-3-22 11:26:48 | 只看該作者
6#
發(fā)表于 2025-3-22 13:30:30 | 只看該作者
Regularity in Modules, = R where R acts by left multiplication on R and we obtain the S-R-bimodule Hom.(R, M) where S := End(M.). Of course, M also is an S-R-bimodule. The first basic observation that allows us to transfer our previous more general results to the module M is the routine fact that . is a bimodule isomorphism.
7#
發(fā)表于 2025-3-22 17:14:35 | 只看該作者
Regular Homomorphisms,Let . be a ring with 1 ∈ . and denote by Mod-. the category of all unitary right .-modules. For arbitrary . ∈ Mod ., let . Then . is an .-bimodule.
8#
發(fā)表于 2025-3-23 01:13:00 | 只看該作者
Indecomposable Modules,A module . is . (or simply .) if and only if 0 and . are the only direct summands of . This means that 0 and 1 are the only idempotents in End(M.). We now study the situation that Reg(.) ≠ 0 and one of the modules . or . is indecomposable. It turns out that much can be said under assumptions weaker than Reg(.) ≠ 0.
9#
發(fā)表于 2025-3-23 05:03:39 | 只看該作者
10#
發(fā)表于 2025-3-23 08:11:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临城县| 岱山县| 朔州市| 城步| 荔浦县| 奉化市| 藁城市| 黔西| 察雅县| 海丰县| 木兰县| 商都县| 南京市| 泗洪县| 泰宁县| 余干县| 朝阳县| 苏尼特右旗| 济源市| 宜都市| 连城县| 西乌珠穆沁旗| 包头市| 孟连| 张掖市| 临洮县| 泸定县| 阿尔山市| 娄烦县| 淮北市| 淳化县| 神农架林区| 桂东县| 上蔡县| 津南区| 广昌县| 天水市| 泸定县| 延川县| 赣榆县| 洛川县|