找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity and Substructures of Hom; Friedrich Kasch,Adolf Mader Book 2009 Birkh?user Basel 2009 Abelian group.algebra.domain decompositio

[復(fù)制鏈接]
查看: 29447|回復(fù): 44
樓主
發(fā)表于 2025-3-21 18:56:52 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Regularity and Substructures of Hom
編輯Friedrich Kasch,Adolf Mader
視頻videohttp://file.papertrans.cn/826/825562/825562.mp4
概述Readable text with new concepts opening new avenues for research.Old and numerous new results in self-contained form.Results never published in book form.Extension of the well-known and important conc
叢書名稱Frontiers in Mathematics
圖書封面Titlebook: Regularity and Substructures of Hom;  Friedrich Kasch,Adolf Mader Book 2009 Birkh?user Basel 2009 Abelian group.algebra.domain decompositio
描述Regular rings were originally introduced by John von Neumann to clarify aspects of operator algebras ([33], [34], [9]). A continuous geometry is an indecomposable, continuous, complemented modular lattice that is not ?nite-dimensional ([8, page 155], [32, page V]). Von Neumann proved ([32, Theorem 14. 1, page 208], [8, page 162]): Every continuous geometry is isomorphic to the lattice of right ideals of some regular ring. The book of K. R. Goodearl ([14]) gives an extensive account of various types of regular rings and there exist several papers studying modules over regular rings ([27], [31], [15]). In abelian group theory the interest lay in determining those groups whose endomorphism rings were regular or had related properties ([11, Section 112], [29], [30], [12], [13], [24]). An interesting feature was introduced by Brown and McCoy ([4]) who showed that every ring contains a unique largest ideal, all of whose elements are regular elements of the ring. In all these studies it was clear that regularity was intimately related to direct sum decompositions. Ware and Zelmanowitz ([35], [37]) de?ned regularity in modules and studied the structure of regular modules. Nicholson ([26])
出版日期Book 2009
關(guān)鍵詞Abelian group; algebra; domain decomposition; homomorphism; module category; regular homomorphism
版次1
doihttps://doi.org/10.1007/978-3-7643-9990-0
isbn_softcover978-3-7643-9989-4
isbn_ebook978-3-7643-9990-0Series ISSN 1660-8046 Series E-ISSN 1660-8054
issn_series 1660-8046
copyrightBirkh?user Basel 2009
The information of publication is updating

書目名稱Regularity and Substructures of Hom影響因子(影響力)




書目名稱Regularity and Substructures of Hom影響因子(影響力)學(xué)科排名




書目名稱Regularity and Substructures of Hom網(wǎng)絡(luò)公開度




書目名稱Regularity and Substructures of Hom網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Regularity and Substructures of Hom被引頻次




書目名稱Regularity and Substructures of Hom被引頻次學(xué)科排名




書目名稱Regularity and Substructures of Hom年度引用




書目名稱Regularity and Substructures of Hom年度引用學(xué)科排名




書目名稱Regularity and Substructures of Hom讀者反饋




書目名稱Regularity and Substructures of Hom讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:16:26 | 只看該作者
https://doi.org/10.1007/978-3-7643-9990-0Abelian group; algebra; domain decomposition; homomorphism; module category; regular homomorphism
板凳
發(fā)表于 2025-3-22 01:42:46 | 只看該作者
978-3-7643-9989-4Birkh?user Basel 2009
地板
發(fā)表于 2025-3-22 06:38:00 | 只看該作者
Regularity and Substructures of Hom978-3-7643-9990-0Series ISSN 1660-8046 Series E-ISSN 1660-8054
5#
發(fā)表于 2025-3-22 11:26:48 | 只看該作者
6#
發(fā)表于 2025-3-22 13:30:30 | 只看該作者
Regularity in Modules, = R where R acts by left multiplication on R and we obtain the S-R-bimodule Hom.(R, M) where S := End(M.). Of course, M also is an S-R-bimodule. The first basic observation that allows us to transfer our previous more general results to the module M is the routine fact that . is a bimodule isomorphism.
7#
發(fā)表于 2025-3-22 17:14:35 | 只看該作者
Regular Homomorphisms,Let . be a ring with 1 ∈ . and denote by Mod-. the category of all unitary right .-modules. For arbitrary . ∈ Mod ., let . Then . is an .-bimodule.
8#
發(fā)表于 2025-3-23 01:13:00 | 只看該作者
Indecomposable Modules,A module . is . (or simply .) if and only if 0 and . are the only direct summands of . This means that 0 and 1 are the only idempotents in End(M.). We now study the situation that Reg(.) ≠ 0 and one of the modules . or . is indecomposable. It turns out that much can be said under assumptions weaker than Reg(.) ≠ 0.
9#
發(fā)表于 2025-3-23 05:03:39 | 只看該作者
10#
發(fā)表于 2025-3-23 08:11:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
额济纳旗| 江口县| 禹城市| 石门县| 锦屏县| 怀柔区| 弥渡县| 汉中市| 米林县| 建瓯市| 嘉禾县| 东乌珠穆沁旗| 千阳县| 屏东市| 凉城县| 沁阳市| 平顺县| 新化县| 社会| 海门市| 永年县| 梁河县| 上虞市| 罗江县| 高安市| 孟州市| 长乐市| 渭南市| 张家界市| 曲松县| 新和县| 内江市| 驻马店市| 新疆| 商城县| 乐都县| 奉贤区| 新泰市| 井研县| 高州市| 宝应县|