找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity and Substructures of Hom; Friedrich Kasch,Adolf Mader Book 2009 Birkh?user Basel 2009 Abelian group.algebra.domain decompositio

[復(fù)制鏈接]
樓主: Auditory-Nerve
11#
發(fā)表于 2025-3-23 10:23:57 | 只看該作者
Reg(,) and Other Substructures of Hom,We turn to connections between Reg(.) and other substructures of . := Hom.(.).
12#
發(fā)表于 2025-3-23 16:56:28 | 只看該作者
Friedrich Kasch,Adolf MaderReadable text with new concepts opening new avenues for research.Old and numerous new results in self-contained form.Results never published in book form.Extension of the well-known and important conc
13#
發(fā)表于 2025-3-23 19:46:47 | 只看該作者
1660-8046 in book form.Extension of the well-known and important concRegular rings were originally introduced by John von Neumann to clarify aspects of operator algebras ([33], [34], [9]). A continuous geometry is an indecomposable, continuous, complemented modular lattice that is not ?nite-dimensional ([8,
14#
發(fā)表于 2025-3-23 23:54:42 | 只看該作者
Book 2009decomposable, continuous, complemented modular lattice that is not ?nite-dimensional ([8, page 155], [32, page V]). Von Neumann proved ([32, Theorem 14. 1, page 208], [8, page 162]): Every continuous geometry is isomorphic to the lattice of right ideals of some regular ring. The book of K. R. Goodea
15#
發(fā)表于 2025-3-24 03:33:41 | 只看該作者
16#
發(fā)表于 2025-3-24 09:05:56 | 只看該作者
17#
發(fā)表于 2025-3-24 12:00:04 | 只看該作者
18#
發(fā)表于 2025-3-24 14:51:30 | 只看該作者
Regularity in Homomorphism Groups of Abelian Groups,oups that have regular endomorphism rings. Cognizant of the existence of the largest regular ideal Reg(.) in the endomorphism ring of the group ., their results have been generalized in [24] to computing Reg(.) . Reg(End(.)). Here we study Hom(.) as an End(.)-End(.)-bimodule in view of regularity. I
19#
發(fā)表于 2025-3-24 20:46:03 | 只看該作者
20#
發(fā)表于 2025-3-25 00:00:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤峰县| 老河口市| 镇远县| 万山特区| 永福县| 台北市| 上蔡县| 周至县| 昔阳县| 新化县| 玉屏| 林西县| 滦平县| 潜山县| 太白县| 泌阳县| 奎屯市| 邓州市| 湘潭市| 阿图什市| 庄河市| 招远市| 宜春市| 东至县| 武强县| 威海市| 特克斯县| 集贤县| 四会市| 花莲县| 康定县| 灯塔市| 遂溪县| 蒙自县| 社会| 肃宁县| 泰兴市| 潞西市| 辰溪县| 郁南县| 卢湾区|