找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity and Substructures of Hom; Friedrich Kasch,Adolf Mader Book 2009 Birkh?user Basel 2009 Abelian group.algebra.domain decompositio

[復(fù)制鏈接]
樓主: Auditory-Nerve
11#
發(fā)表于 2025-3-23 10:23:57 | 只看該作者
Reg(,) and Other Substructures of Hom,We turn to connections between Reg(.) and other substructures of . := Hom.(.).
12#
發(fā)表于 2025-3-23 16:56:28 | 只看該作者
Friedrich Kasch,Adolf MaderReadable text with new concepts opening new avenues for research.Old and numerous new results in self-contained form.Results never published in book form.Extension of the well-known and important conc
13#
發(fā)表于 2025-3-23 19:46:47 | 只看該作者
1660-8046 in book form.Extension of the well-known and important concRegular rings were originally introduced by John von Neumann to clarify aspects of operator algebras ([33], [34], [9]). A continuous geometry is an indecomposable, continuous, complemented modular lattice that is not ?nite-dimensional ([8,
14#
發(fā)表于 2025-3-23 23:54:42 | 只看該作者
Book 2009decomposable, continuous, complemented modular lattice that is not ?nite-dimensional ([8, page 155], [32, page V]). Von Neumann proved ([32, Theorem 14. 1, page 208], [8, page 162]): Every continuous geometry is isomorphic to the lattice of right ideals of some regular ring. The book of K. R. Goodea
15#
發(fā)表于 2025-3-24 03:33:41 | 只看該作者
16#
發(fā)表于 2025-3-24 09:05:56 | 只看該作者
17#
發(fā)表于 2025-3-24 12:00:04 | 只看該作者
18#
發(fā)表于 2025-3-24 14:51:30 | 只看該作者
Regularity in Homomorphism Groups of Abelian Groups,oups that have regular endomorphism rings. Cognizant of the existence of the largest regular ideal Reg(.) in the endomorphism ring of the group ., their results have been generalized in [24] to computing Reg(.) . Reg(End(.)). Here we study Hom(.) as an End(.)-End(.)-bimodule in view of regularity. I
19#
發(fā)表于 2025-3-24 20:46:03 | 只看該作者
20#
發(fā)表于 2025-3-25 00:00:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 05:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
修文县| SHOW| 屯门区| 宁远县| 洛川县| 南昌市| 聂拉木县| 开远市| 上蔡县| 曲沃县| 颍上县| 闻喜县| 永川市| 盈江县| 灌云县| 望谟县| 原平市| 新田县| 苍溪县| 南木林县| 高淳县| 枝江市| 临泽县| 北票市| 安阳市| 新兴县| 隆化县| 东安县| 怀宁县| 固镇县| 蓬莱市| 团风县| 娄底市| 九寨沟县| 昌黎县| 徐水县| 启东市| 清水河县| 阿拉善右旗| 龙南县| 平邑县|