找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Group Actions and Equivariant Cohomology; Shubham Dwivedi,Jonathan Herman,Theo van den Hurk Book 2019 The Author(s), under exc

[復(fù)制鏈接]
樓主: Insularity
11#
發(fā)表于 2025-3-23 13:03:33 | 只看該作者
https://doi.org/10.1007/978-1-4612-4646-6s that around any point of a symplectic manifold, there is a chart for which the symplectic form has a particularly nice form. In this section, we give a proof of an equivariant version of the theorem and look at some corollaries. We direct the reader to [.] or Sect.?22 of [.] for more details.
12#
發(fā)表于 2025-3-23 16:26:59 | 只看該作者
13#
發(fā)表于 2025-3-23 19:18:38 | 只看該作者
14#
發(fā)表于 2025-3-24 00:51:45 | 只看該作者
The Physics Behind Semiconductor Technologyase space”, parametrizing position and momentum) is replaced by a vector space with an inner product; in other words, a Hilbert space (the “space of wave functions”). Functions on the manifold (“observables”) are replaced by endomorphisms of the vector space.
15#
發(fā)表于 2025-3-24 03:33:02 | 只看該作者
16#
發(fā)表于 2025-3-24 07:32:24 | 只看該作者
The Symplectic Structure on Coadjoint Orbits,irillov–Kostant–Souriau form). An example of an orbit of the adjoint action is the two-sphere, which is an orbit of the action of the rotation group .(3) on its Lie algebra .. Background information on Lie groups may be found in Appendix.
17#
發(fā)表于 2025-3-24 11:09:08 | 只看該作者
,The Duistermaat–Heckman Theorem,ich comes from the original article [.]) describes how the Liouville measure of a symplectic quotient varies. The second describes an oscillatory integral over a symplectic manifold equipped with a Hamiltonian group action and can be characterized by the slogan “Stationary phase is exact”.
18#
發(fā)表于 2025-3-24 16:58:33 | 只看該作者
Geometric Quantization,ase space”, parametrizing position and momentum) is replaced by a vector space with an inner product; in other words, a Hilbert space (the “space of wave functions”). Functions on the manifold (“observables”) are replaced by endomorphisms of the vector space.
19#
發(fā)表于 2025-3-24 22:01:45 | 只看該作者
20#
發(fā)表于 2025-3-25 02:59:25 | 只看該作者
Hamiltonian Group Actions and Equivariant Cohomology978-3-030-27227-2Series ISSN 2191-8198 Series E-ISSN 2191-8201
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
马公市| 石楼县| 江津市| 新昌县| 义乌市| 获嘉县| 衡水市| 南陵县| 大洼县| 阳原县| 彩票| 阿荣旗| 普兰县| 潼南县| 哈密市| 洛浦县| 宜君县| 紫金县| 怀安县| 禹城市| 邵阳市| 胶南市| 健康| 桂林市| 凤阳县| 富源县| 延吉市| 闵行区| 博乐市| 鹰潭市| 沙雅县| 桂东县| 河西区| 新蔡县| 罗甸县| 阜新市| 三穗县| 霸州市| 娄烦县| 沂源县| 同江市|