找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Group Actions and Equivariant Cohomology; Shubham Dwivedi,Jonathan Herman,Theo van den Hurk Book 2019 The Author(s), under exc

[復(fù)制鏈接]
樓主: Insularity
21#
發(fā)表于 2025-3-25 06:11:24 | 只看該作者
https://doi.org/10.1007/978-3-030-27227-2Symplectic geometry; Equivariant cohomology; Moduli spaces; Flat connections; Gauge theory
22#
發(fā)表于 2025-3-25 10:51:12 | 只看該作者
Book 2019 of symplectic vector spaces, followed by symplectic manifolds and then Hamiltonian group actions and the Darboux theorem. After discussing moment maps and orbits of the coadjoint action, symplectic quotients are studied. The convexity theorem and toric manifolds come next and we give a comprehensiv
23#
發(fā)表于 2025-3-25 13:16:57 | 只看該作者
24#
發(fā)表于 2025-3-25 17:22:55 | 只看該作者
Toric Manifolds,symmetry as possible—when the torus is of largest possible dimension for the action to be effective. The main result of this chapter, due to Delzant, says that in the case of maximal symmetry the polytope completely determines the Hamiltonian .-space, where . is a torus.
25#
發(fā)表于 2025-3-25 21:00:42 | 只看該作者
26#
發(fā)表于 2025-3-26 02:30:54 | 只看該作者
27#
發(fā)表于 2025-3-26 04:30:46 | 只看該作者
28#
發(fā)表于 2025-3-26 08:31:14 | 只看該作者
Equivariant Cohomology,al dependence on .. A version of de Rham cohomology can be developed for the Cartan model. The localization theorem of Atiyah–Bott and Berline–Vergne describes the evaluation of such an equivariantly closed differential form on the fundamental class of the manifold.
29#
發(fā)表于 2025-3-26 12:54:15 | 只看該作者
30#
發(fā)表于 2025-3-26 19:37:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
师宗县| 广河县| 手游| 久治县| 新乐市| 同江市| 乐安县| 石狮市| 通辽市| 安龙县| 衡山县| 靖江市| 大城县| 嘉鱼县| 安新县| 小金县| 永泰县| 永仁县| 龙游县| 嘉峪关市| 平乐县| 石楼县| 富顺县| 突泉县| 巴中市| 隆尧县| 公安县| 策勒县| 伊春市| 桂平市| 屯门区| 锦州市| 贞丰县| 裕民县| 东丰县| 三门峡市| 香港| 正宁县| 青州市| 瑞丽市| 彩票|