找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Group Actions and Equivariant Cohomology; Shubham Dwivedi,Jonathan Herman,Theo van den Hurk Book 2019 The Author(s), under exc

[復(fù)制鏈接]
樓主: Insularity
21#
發(fā)表于 2025-3-25 06:11:24 | 只看該作者
https://doi.org/10.1007/978-3-030-27227-2Symplectic geometry; Equivariant cohomology; Moduli spaces; Flat connections; Gauge theory
22#
發(fā)表于 2025-3-25 10:51:12 | 只看該作者
Book 2019 of symplectic vector spaces, followed by symplectic manifolds and then Hamiltonian group actions and the Darboux theorem. After discussing moment maps and orbits of the coadjoint action, symplectic quotients are studied. The convexity theorem and toric manifolds come next and we give a comprehensiv
23#
發(fā)表于 2025-3-25 13:16:57 | 只看該作者
24#
發(fā)表于 2025-3-25 17:22:55 | 只看該作者
Toric Manifolds,symmetry as possible—when the torus is of largest possible dimension for the action to be effective. The main result of this chapter, due to Delzant, says that in the case of maximal symmetry the polytope completely determines the Hamiltonian .-space, where . is a torus.
25#
發(fā)表于 2025-3-25 21:00:42 | 只看該作者
26#
發(fā)表于 2025-3-26 02:30:54 | 只看該作者
27#
發(fā)表于 2025-3-26 04:30:46 | 只看該作者
28#
發(fā)表于 2025-3-26 08:31:14 | 只看該作者
Equivariant Cohomology,al dependence on .. A version of de Rham cohomology can be developed for the Cartan model. The localization theorem of Atiyah–Bott and Berline–Vergne describes the evaluation of such an equivariantly closed differential form on the fundamental class of the manifold.
29#
發(fā)表于 2025-3-26 12:54:15 | 只看該作者
30#
發(fā)表于 2025-3-26 19:37:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
娄底市| 尤溪县| 铁岭市| 延边| 莆田市| 叙永县| 永宁县| 焦作市| 塔城市| 贺州市| 兴义市| 循化| 洪湖市| 馆陶县| 化德县| 革吉县| 利津县| 航空| 新乡县| 积石山| 金湖县| 金阳县| 晋城| 永泰县| 鹤壁市| 六枝特区| 和平县| 贡觉县| 环江| 常熟市| 文山县| 安康市| 秀山| 买车| 台安县| 岳池县| 玉树县| 凌源市| 柳林县| 安新县| 沁源县|