找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Hamiltonian Group Actions and Equivariant Cohomology; Shubham Dwivedi,Jonathan Herman,Theo van den Hurk Book 2019 The Author(s), under exc

[復(fù)制鏈接]
樓主: Insularity
31#
發(fā)表于 2025-3-26 22:34:06 | 只看該作者
The Physicists’ View of Nature Part 2symmetry as possible—when the torus is of largest possible dimension for the action to be effective. The main result of this chapter, due to Delzant, says that in the case of maximal symmetry the polytope completely determines the Hamiltonian .-space, where . is a torus.
32#
發(fā)表于 2025-3-27 03:33:48 | 只看該作者
Book 2019an essential prerequisite for this course. Some of the later material will be more accessible to readers who have had a basic course on algebraic topology. For some of the later chapters, it would be helpful to have some background on representation theory and complex geometry..
33#
發(fā)表于 2025-3-27 09:08:16 | 只看該作者
34#
發(fā)表于 2025-3-27 10:16:51 | 只看該作者
2191-8198 ble to readers who have had a basic course on algebraic topology. For some of the later chapters, it would be helpful to have some background on representation theory and complex geometry..978-3-030-27226-5978-3-030-27227-2Series ISSN 2191-8198 Series E-ISSN 2191-8201
35#
發(fā)表于 2025-3-27 16:39:53 | 只看該作者
36#
發(fā)表于 2025-3-27 21:46:55 | 只看該作者
37#
發(fā)表于 2025-3-28 00:25:20 | 只看該作者
https://doi.org/10.1007/978-1-4612-4646-6s that around any point of a symplectic manifold, there is a chart for which the symplectic form has a particularly nice form. In this section, we give a proof of an equivariant version of the theorem and look at some corollaries. We direct the reader to [.] or Sect.?22 of [.] for more details.
38#
發(fā)表于 2025-3-28 03:17:18 | 只看該作者
https://doi.org/10.1007/978-1-60761-134-9irillov–Kostant–Souriau form). An example of an orbit of the adjoint action is the two-sphere, which is an orbit of the action of the rotation group .(3) on its Lie algebra .. Background information on Lie groups may be found in Appendix.
39#
發(fā)表于 2025-3-28 06:29:05 | 只看該作者
40#
發(fā)表于 2025-3-28 11:06:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民乐县| 黔南| 康乐县| 荃湾区| 甘南县| 闽侯县| 通许县| 德令哈市| 土默特右旗| 汉源县| 永修县| 盐城市| 中牟县| 郎溪县| 宁国市| 丰台区| 华亭县| 武川县| 齐河县| 海盐县| 屏边| 江孜县| 彭阳县| 武隆县| 宁乡县| 无棣县| 西丰县| 台中市| 安乡县| 通化县| 九寨沟县| 楚雄市| 龙岩市| 德阳市| 铜鼓县| 赞皇县| 新安县| 杂多县| 晋江市| 含山县| 临桂县|