找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Extensions in Statistical and Stochastic Systems; Makoto Katori Book 2023 The Author(s), under exclusive license to Springer Natu

[復(fù)制鏈接]
樓主: 加冕
11#
發(fā)表于 2025-3-23 09:46:45 | 只看該作者
Book 2023analogue, and elliptic-analogue. Based on the addition formula and associated mathematical structures, productive studies have been carried out in the process of .q.-extension of the rational (classical) formulas in enumerative combinatorics, theory of special functions, representation theory, study
12#
發(fā)表于 2025-3-23 16:04:35 | 只看該作者
13#
發(fā)表于 2025-3-23 19:26:29 | 只看該作者
14#
發(fā)表于 2025-3-23 22:14:29 | 只看該作者
https://doi.org/10.1007/978-3-322-93175-7ngle delta function. Then we consider the Brownian motion on a unit circle, which is regarded as a one-dimensional torus and is denoted by .. Two different formulas of the transition probability are given, both of which are expressed using the theta function with different nomes. The equivalence of
15#
發(fā)表于 2025-3-24 05:37:57 | 只看該作者
16#
發(fā)表于 2025-3-24 08:22:59 | 只看該作者
17#
發(fā)表于 2025-3-24 14:07:07 | 只看該作者
https://doi.org/10.1007/978-3-663-14751-0time duration [0,?.]. Here we define the correlation functions and their generating function called the characteristic function, which specify the point process. In particular, if all correlation functions are expressed by determinants specified by a two-point continuous function, then the point pro
18#
發(fā)表于 2025-3-24 15:07:42 | 只看該作者
19#
發(fā)表于 2025-3-24 22:57:49 | 只看該作者
20#
發(fā)表于 2025-3-25 02:48:12 | 只看該作者
Makoto KatoriExplains elliptic extensions using the Brownian motion and determinantal point processes.Uses only one kind of special function, called the theta function, and visualizes elliptic extensions using gra
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 07:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五常市| 焦作市| 大名县| 宜章县| 额尔古纳市| 文山县| 漠河县| 丁青县| 东丰县| 沿河| 太仓市| 浦东新区| 丹江口市| 噶尔县| 黎川县| 新和县| 怀远县| 邹平县| 湟源县| 永安市| 太谷县| 衡南县| 华阴市| 同江市| 罗甸县| 洛扎县| 荃湾区| 铜山县| 德惠市| 龙口市| 邵阳市| 内乡县| 双流县| 扶绥县| 内江市| 红原县| 封开县| 民权县| 天镇县| 丹东市| 舟山市|