找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Extensions in Statistical and Stochastic Systems; Makoto Katori Book 2023 The Author(s), under exclusive license to Springer Natu

[復(fù)制鏈接]
樓主: 加冕
21#
發(fā)表于 2025-3-25 05:16:19 | 只看該作者
22#
發(fā)表于 2025-3-25 08:43:41 | 只看該作者
978-981-19-9526-2The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
23#
發(fā)表于 2025-3-25 14:09:32 | 只看該作者
24#
發(fā)表于 2025-3-25 16:53:21 | 只看該作者
https://doi.org/10.1007/978-981-19-9527-9q-extensions and elliptic extensions; Probability theory and stochastic processes; Statistical physics
25#
發(fā)表于 2025-3-26 00:01:34 | 只看該作者
26#
發(fā)表于 2025-3-26 02:42:12 | 只看該作者
Brownian Motion and Theta Functions,ngle delta function. Then we consider the Brownian motion on a unit circle, which is regarded as a one-dimensional torus and is denoted by .. Two different formulas of the transition probability are given, both of which are expressed using the theta function with different nomes. The equivalence of
27#
發(fā)表于 2025-3-26 06:48:36 | 只看該作者
Biorthogonal Systems of Theta Functions and Macdonald Denominators,? Rosengren and Schlosser gave seven kinds of answers to this fundamental question by introducing seven infinite series of spaces of theta functions associated with the irreducible reduced affine root systems, ., ., ., ., ., ., ., and ., .. Here . indicates the degree of the elliptic analogues of po
28#
發(fā)表于 2025-3-26 09:05:44 | 只看該作者
29#
發(fā)表于 2025-3-26 14:31:41 | 只看該作者
30#
發(fā)表于 2025-3-26 19:10:03 | 只看該作者
Doubly Periodic Determinantal Point Processes,ument . of these functions to complex variable . and define seven types of orthonormal . theta functions . in the fundamental domain . in ., which is given by a . rectangular domain. Then seven types of DPPs are introduced so that the correlation functions are expressed by the orthonormal functions.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 07:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
琼中| 梁平县| 隆林| 东兰县| 镇巴县| 平昌县| 丰台区| 阿拉善右旗| 九寨沟县| 镇原县| 凌云县| 四会市| 五大连池市| 筠连县| 即墨市| 平顺县| 无棣县| 金湖县| 长阳| 泰安市| 镇远县| 安丘市| 雅安市| 康乐县| 阿坝县| 西藏| 清远市| 油尖旺区| 青铜峡市| 理塘县| 康保县| 黑河市| 德昌县| 比如县| 云林县| 博兴县| 剑阁县| 香河县| 固安县| 滨州市| 沂源县|