找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Extensions in Statistical and Stochastic Systems; Makoto Katori Book 2023 The Author(s), under exclusive license to Springer Natu

[復(fù)制鏈接]
查看: 6095|回復(fù): 38
樓主
發(fā)表于 2025-3-21 18:45:08 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Elliptic Extensions in Statistical and Stochastic Systems
編輯Makoto Katori
視頻videohttp://file.papertrans.cn/308/307788/307788.mp4
概述Explains elliptic extensions using the Brownian motion and determinantal point processes.Uses only one kind of special function, called the theta function, and visualizes elliptic extensions using gra
叢書名稱SpringerBriefs in Mathematical Physics
圖書封面Titlebook: Elliptic Extensions in Statistical and Stochastic Systems;  Makoto Katori Book 2023 The Author(s), under exclusive license to Springer Natu
描述Hermite‘s theorem makes it known that there are three levels of mathematical frames in which a simple addition formula is valid. They are rational, q-analogue, and elliptic-analogue. Based on the addition formula and associated mathematical structures, productive studies have been carried out in the process of .q.-extension of the rational (classical) formulas in enumerative combinatorics, theory of special functions, representation theory, study of integrable systems, and so on. Originating from the paper by Date, Jimbo, Kuniba, Miwa, and Okado on the exactly solvable statistical mechanics models using the theta function identities (1987), the formulas obtained at the .q.-level are now extended to the elliptic level in many research fields in mathematics and theoretical physics. In the present monograph, the recent progress of the elliptic extensions in the study of statistical and stochastic models in equilibrium and nonequilibrium statistical mechanics and probability theory is shown. At the elliptic level, many special functions are used, including Jacobi‘s theta functions, Weierstrass elliptic functions, Jacobi‘s elliptic functions, and others. This monograph is not intended t
出版日期Book 2023
關(guān)鍵詞q-extensions and elliptic extensions; Probability theory and stochastic processes; Statistical physics
版次1
doihttps://doi.org/10.1007/978-981-19-9527-9
isbn_softcover978-981-19-9526-2
isbn_ebook978-981-19-9527-9Series ISSN 2197-1757 Series E-ISSN 2197-1765
issn_series 2197-1757
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
The information of publication is updating

書目名稱Elliptic Extensions in Statistical and Stochastic Systems影響因子(影響力)




書目名稱Elliptic Extensions in Statistical and Stochastic Systems影響因子(影響力)學科排名




書目名稱Elliptic Extensions in Statistical and Stochastic Systems網(wǎng)絡(luò)公開度




書目名稱Elliptic Extensions in Statistical and Stochastic Systems網(wǎng)絡(luò)公開度學科排名




書目名稱Elliptic Extensions in Statistical and Stochastic Systems被引頻次




書目名稱Elliptic Extensions in Statistical and Stochastic Systems被引頻次學科排名




書目名稱Elliptic Extensions in Statistical and Stochastic Systems年度引用




書目名稱Elliptic Extensions in Statistical and Stochastic Systems年度引用學科排名




書目名稱Elliptic Extensions in Statistical and Stochastic Systems讀者反饋




書目名稱Elliptic Extensions in Statistical and Stochastic Systems讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:32:00 | 只看該作者
https://doi.org/10.1007/978-3-662-44877-9rmer systems, the key aspect of future direction will be dynamical property of DPPs. For the latter systems, it will be the connections to other statistical systems such as the one-component plasma models and the Gaussian free fields.
板凳
發(fā)表于 2025-3-22 01:49:27 | 只看該作者
https://doi.org/10.1007/978-3-322-93175-7of the boundary points and hence we obtain four types of Brownian motion in the interval. We see an interesting correspondence between these four types of Brownian motion and the four types of Jacobi’s theta functions via expressions of the transition probability densities.
地板
發(fā)表于 2025-3-22 07:30:40 | 只看該作者
5#
發(fā)表于 2025-3-22 09:45:20 | 只看該作者
Grundlagen der Integralrechnung,e three types of infinite DPPs on .. One of them is the uniform DPP on ., which is identified with the Ginibre DPP well-studied in random matrix theory. The other two DPPs are new, and are rotationally invariant but inhomogeneous in the radial direction.
6#
發(fā)表于 2025-3-22 13:03:52 | 只看該作者
Brownian Motion and Theta Functions,of the boundary points and hence we obtain four types of Brownian motion in the interval. We see an interesting correspondence between these four types of Brownian motion and the four types of Jacobi’s theta functions via expressions of the transition probability densities.
7#
發(fā)表于 2025-3-22 18:12:11 | 只看該作者
Biorthogonal Systems of Theta Functions and Macdonald Denominators,give a brief review of the theory of Rosengren and Schlosser. Then we introduce appropriate inner products and prove the biorthogonality relations for the . theta functions of Rosengren and Schlosser.
8#
發(fā)表于 2025-3-23 00:20:04 | 只看該作者
Doubly Periodic Determinantal Point Processes,e three types of infinite DPPs on .. One of them is the uniform DPP on ., which is identified with the Ginibre DPP well-studied in random matrix theory. The other two DPPs are new, and are rotationally invariant but inhomogeneous in the radial direction.
9#
發(fā)表于 2025-3-23 03:03:58 | 只看該作者
10#
發(fā)表于 2025-3-23 07:46:55 | 只看該作者
Future Problems,rmer systems, the key aspect of future direction will be dynamical property of DPPs. For the latter systems, it will be the connections to other statistical systems such as the one-component plasma models and the Gaussian free fields.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 07:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
喜德县| 遵化市| 漠河县| 正阳县| 来宾市| 佛山市| 开鲁县| 绥化市| 太康县| 额济纳旗| 于田县| 灯塔市| 牡丹江市| 东莞市| 临清市| 高雄县| 田林县| 古田县| 大同县| 宁陕县| 郑州市| 香格里拉县| 沙湾县| 施秉县| 潜山县| 江孜县| 青田县| 嘉鱼县| 迭部县| 威远县| 印江| 博白县| 渭源县| 广昌县| 育儿| 宿松县| 兖州市| 肃南| 晋州市| 安吉县| 彝良县|