找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Extensions in Statistical and Stochastic Systems; Makoto Katori Book 2023 The Author(s), under exclusive license to Springer Natu

[復制鏈接]
樓主: 加冕
21#
發(fā)表于 2025-3-25 05:16:19 | 只看該作者
22#
發(fā)表于 2025-3-25 08:43:41 | 只看該作者
978-981-19-9526-2The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
23#
發(fā)表于 2025-3-25 14:09:32 | 只看該作者
24#
發(fā)表于 2025-3-25 16:53:21 | 只看該作者
https://doi.org/10.1007/978-981-19-9527-9q-extensions and elliptic extensions; Probability theory and stochastic processes; Statistical physics
25#
發(fā)表于 2025-3-26 00:01:34 | 只看該作者
26#
發(fā)表于 2025-3-26 02:42:12 | 只看該作者
Brownian Motion and Theta Functions,ngle delta function. Then we consider the Brownian motion on a unit circle, which is regarded as a one-dimensional torus and is denoted by .. Two different formulas of the transition probability are given, both of which are expressed using the theta function with different nomes. The equivalence of
27#
發(fā)表于 2025-3-26 06:48:36 | 只看該作者
Biorthogonal Systems of Theta Functions and Macdonald Denominators,? Rosengren and Schlosser gave seven kinds of answers to this fundamental question by introducing seven infinite series of spaces of theta functions associated with the irreducible reduced affine root systems, ., ., ., ., ., ., ., and ., .. Here . indicates the degree of the elliptic analogues of po
28#
發(fā)表于 2025-3-26 09:05:44 | 只看該作者
29#
發(fā)表于 2025-3-26 14:31:41 | 只看該作者
30#
發(fā)表于 2025-3-26 19:10:03 | 只看該作者
Doubly Periodic Determinantal Point Processes,ument . of these functions to complex variable . and define seven types of orthonormal . theta functions . in the fundamental domain . in ., which is given by a . rectangular domain. Then seven types of DPPs are introduced so that the correlation functions are expressed by the orthonormal functions.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 15:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
苏尼特左旗| 琼海市| 沂源县| 普陀区| 丹棱县| 鄂尔多斯市| 北票市| 宁武县| 庆安县| 肥西县| 驻马店市| 双江| 顺平县| 津南区| 蓝田县| 临泉县| 繁峙县| 沙洋县| 寻甸| 新乡县| 曲阳县| 东明县| 太仆寺旗| 郎溪县| 万载县| 社会| 开远市| 富阳市| 汝南县| 云南省| 广水市| 日喀则市| 广灵县| 电白县| 扶绥县| 罗城| 牡丹江市| 新竹市| 长汀县| 塘沽区| 惠安县|