找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Equations and Power Integral Bases; New Computational Me István Gaál Book 20021st edition Birkh?user Boston 2002 Algebraic Numb

[復(fù)制鏈接]
查看: 18256|回復(fù): 48
樓主
發(fā)表于 2025-3-21 19:16:26 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Diophantine Equations and Power Integral Bases
副標(biāo)題New Computational Me
編輯István Gaál
視頻videohttp://file.papertrans.cn/281/280541/280541.mp4
圖書封面Titlebook: Diophantine Equations and Power Integral Bases; New Computational Me István Gaál Book 20021st edition Birkh?user Boston 2002 Algebraic Numb
描述This monograph investigates algorithms for determining power integral bases in algebraic number fields. It introduces the best-known methods for solving several types of diophantine equations using Baker-type estimates, reduction methods, and enumeration algorithms. Particular emphasis is placed on properties of number fields and new applications. The text is illustrated with several tables of various number fields, including their data on power integral bases. Good resource for solving classical types of diophantine equations. Aimed at advanced undergraduate/graduate students and researchers.
出版日期Book 20021st edition
關(guān)鍵詞Algebraic Number Theory; Algorithmic Analysis; Finite; Mathematics of Computing; algebra; algorithms; calc
版次1
doihttps://doi.org/10.1007/978-1-4612-0085-7
isbn_ebook978-1-4612-0085-7
copyrightBirkh?user Boston 2002
The information of publication is updating

書目名稱Diophantine Equations and Power Integral Bases影響因子(影響力)




書目名稱Diophantine Equations and Power Integral Bases影響因子(影響力)學(xué)科排名




書目名稱Diophantine Equations and Power Integral Bases網(wǎng)絡(luò)公開度




書目名稱Diophantine Equations and Power Integral Bases網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Diophantine Equations and Power Integral Bases被引頻次




書目名稱Diophantine Equations and Power Integral Bases被引頻次學(xué)科排名




書目名稱Diophantine Equations and Power Integral Bases年度引用




書目名稱Diophantine Equations and Power Integral Bases年度引用學(xué)科排名




書目名稱Diophantine Equations and Power Integral Bases讀者反饋




書目名稱Diophantine Equations and Power Integral Bases讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:39:06 | 只看該作者
Robert Fisch,Janko Gravner,David Griffeathcase 1, α,...,α. is an integral basis of ., called a .. Our main task is to develop algorithms for determining all generators α of power integral bases. As we shall see, this algorithmic problem is satisfactorily solved for lower degree number fields (especially for cubic and quartic fields) and the
板凳
發(fā)表于 2025-3-22 02:41:00 | 只看該作者
地板
發(fā)表于 2025-3-22 05:17:28 | 只看該作者
Robert Fisch,Janko Gravner,David Griffeathl see in the following chapters, various types of Thue equations play an essential role in the resolution of index form equations [Ga96b]. We summarize the methods for the resolution of these equations in this chapter. We shall consider Thue equations (Section 3.1), inhomogeneous Thue equations (Sec
5#
發(fā)表于 2025-3-22 11:14:23 | 只看該作者
Kenneth S. Alexander,Joseph C. Watkinsrties, makes the resolution of index form equations much easier. A special situation (which otherwise is frequent in numerical examples) is considered in Section 4.4, when the field . is the composite of its subfields. The general results on composite fields have several applications, see e.g., Sect
6#
發(fā)表于 2025-3-22 13:02:52 | 只看該作者
Spatial Linkages of the Chinese Economybles. The resolution of such an equation can yield a difficult problem. The main goal of this Chapter is to point out that in the quartic case the index form equation can be reduced to a cubic and some corresponding quartic Thue equations (see Section 6.1). This means that in fact the index form equ
7#
發(fā)表于 2025-3-22 17:13:41 | 只看該作者
8#
發(fā)表于 2025-3-23 00:27:37 | 只看該作者
Visualizing Classic Chinese Literaturesituation. The algorithms for determining generators of relative power integral bases will be applied for finding generators of integral bases in higher degree fields having subfields. It is easy to see that if an element generates a power integral basis, then it also generates a relative power inte
9#
發(fā)表于 2025-3-23 03:33:57 | 只看該作者
10#
發(fā)表于 2025-3-23 07:05:30 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
射洪县| 通河县| 韩城市| 海原县| 茂名市| 景宁| 湘乡市| 镇江市| 贵德县| 西昌市| 泸定县| 凉城县| 黔东| 东兴市| 南康市| 灵台县| 中方县| 城市| 新密市| 姚安县| 乐清市| 万宁市| 东阳市| 白城市| 那曲县| 金阳县| 衡山县| 重庆市| 综艺| 新蔡县| 彭州市| 太仆寺旗| 咸丰县| 江孜县| 温宿县| 深泽县| 崇明县| 南岸区| 徐州市| 当阳市| 大竹县|