找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Equations and Power Integral Bases; New Computational Me István Gaál Book 20021st edition Birkh?user Boston 2002 Algebraic Numb

[復(fù)制鏈接]
樓主: irritants
31#
發(fā)表于 2025-3-26 21:35:34 | 只看該作者
32#
發(fā)表于 2025-3-27 05:06:06 | 只看該作者
Spatial Linkages of the Chinese Economyex form equation can be reduced to a cubic and some corresponding quartic Thue equations (see Section 6.1). This means that in fact the index form equations in quartic fields are not much harder to solve than in the cubic case.
33#
發(fā)表于 2025-3-27 08:09:06 | 只看該作者
34#
發(fā)表于 2025-3-27 13:23:49 | 只看該作者
Jin Zhang,Jinkai Li,Xiaotian Wang having subfields. The case of number fields of degree seven seems to be complicated, since these fields can not have subfields. Special number fields of degree seven (e.g., cyclic fields) can be considered by the methods we used so far.
35#
發(fā)表于 2025-3-27 16:45:05 | 只看該作者
36#
發(fā)表于 2025-3-27 21:03:22 | 只看該作者
37#
發(fā)表于 2025-3-27 22:43:30 | 只看該作者
Auxiliary Results, Tools,he reduced bound is usually between 100 and 1000. These reduced bounds are quite modest, however if there are more than 4–5 of them, it is already impossible to test directly all possible exponents with absolute values under the reduced bound. Hence we have to apply certain enumeration methods (Section 2.3) to overcome this difficulty.
38#
發(fā)表于 2025-3-28 04:26:04 | 只看該作者
39#
發(fā)表于 2025-3-28 08:04:56 | 只看該作者
40#
發(fā)表于 2025-3-28 11:21:44 | 只看該作者
Auxiliary Results, Tools,alled . in two variables of type. + . = 1(cf. equation (2.5)) with given algebraic ., where . are unknown units in a number field. These units are written as a power product of the generators of the unit group and the unknown exponents are to be determined. Baker’s method (Section 2.1) is used to gi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
常宁市| 安平县| 九江市| 汉川市| 开鲁县| 辰溪县| 正镶白旗| 西贡区| 陇川县| 饶平县| 上虞市| 汉源县| 渑池县| 阿合奇县| 临漳县| 广南县| 翁牛特旗| 怀集县| 喀喇沁旗| 石城县| 邻水| 乌鲁木齐县| 大余县| 凭祥市| 沙湾县| 临安市| 古田县| 松潘县| 高雄县| 泰安市| 县级市| 丹寨县| 沁源县| 哈尔滨市| 浮梁县| 绥棱县| 西乌珠穆沁旗| 连南| 湾仔区| 宾阳县| 资兴市|