找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Equations and Power Integral Bases; New Computational Me István Gaál Book 20021st edition Birkh?user Boston 2002 Algebraic Numb

[復制鏈接]
樓主: irritants
11#
發(fā)表于 2025-3-23 12:27:05 | 只看該作者
http://image.papertrans.cn/e/image/280541.jpg
12#
發(fā)表于 2025-3-23 15:17:49 | 只看該作者
Kenneth S. Alexander,Joseph C. Watkinsrties, makes the resolution of index form equations much easier. A special situation (which otherwise is frequent in numerical examples) is considered in Section 4.4, when the field . is the composite of its subfields. The general results on composite fields have several applications, see e.g., Sections 8.3, 10.2, 10.3.1 and 10.3.3.
13#
發(fā)表于 2025-3-23 18:56:15 | 只看該作者
14#
發(fā)表于 2025-3-24 00:27:24 | 只看該作者
15#
發(fā)表于 2025-3-24 06:21:18 | 只看該作者
16#
發(fā)表于 2025-3-24 08:53:19 | 只看該作者
17#
發(fā)表于 2025-3-24 11:11:29 | 只看該作者
18#
發(fā)表于 2025-3-24 17:28:04 | 只看該作者
Sextic Fields,An analogue of the general method used for quintic fields, reducing the index form equation directly to unit equations, does not seem to be feasible in sextic fields.
19#
發(fā)表于 2025-3-24 22:08:28 | 只看該作者
Introduction,s. As we shall see, this algorithmic problem is satisfactorily solved for lower degree number fields (especially for cubic and quartic fields) and there are efficient methods for certain classes of higher degree fields. Our algorithms enable us in many cases to describe all power integral bases also in . of certain number fields.
20#
發(fā)表于 2025-3-25 02:01:26 | 只看該作者
Quartic Fields,ex form equation can be reduced to a cubic and some corresponding quartic Thue equations (see Section 6.1). This means that in fact the index form equations in quartic fields are not much harder to solve than in the cubic case.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 15:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
叙永县| 阳泉市| 桦南县| 揭东县| 临沧市| 军事| 黄龙县| 商城县| 安新县| 平阳县| 都兰县| 尼玛县| 营口市| 毕节市| 翼城县| 汕头市| 东乌珠穆沁旗| 凌海市| 宿州市| 澄江县| 扎兰屯市| 桑植县| 留坝县| 威宁| 裕民县| 普兰店市| 兴山县| 玉溪市| 中方县| 西和县| 酒泉市| 靖州| 宝坻区| 张北县| 嵊州市| 青阳县| 平原县| 珠海市| 马鞍山市| 抚远县| 广宗县|