找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Diophantine Equations and Power Integral Bases; New Computational Me István Gaál Book 20021st edition Birkh?user Boston 2002 Algebraic Numb

[復(fù)制鏈接]
樓主: irritants
11#
發(fā)表于 2025-3-23 12:27:05 | 只看該作者
http://image.papertrans.cn/e/image/280541.jpg
12#
發(fā)表于 2025-3-23 15:17:49 | 只看該作者
Kenneth S. Alexander,Joseph C. Watkinsrties, makes the resolution of index form equations much easier. A special situation (which otherwise is frequent in numerical examples) is considered in Section 4.4, when the field . is the composite of its subfields. The general results on composite fields have several applications, see e.g., Sections 8.3, 10.2, 10.3.1 and 10.3.3.
13#
發(fā)表于 2025-3-23 18:56:15 | 只看該作者
14#
發(fā)表于 2025-3-24 00:27:24 | 只看該作者
15#
發(fā)表于 2025-3-24 06:21:18 | 只看該作者
16#
發(fā)表于 2025-3-24 08:53:19 | 只看該作者
17#
發(fā)表于 2025-3-24 11:11:29 | 只看該作者
18#
發(fā)表于 2025-3-24 17:28:04 | 只看該作者
Sextic Fields,An analogue of the general method used for quintic fields, reducing the index form equation directly to unit equations, does not seem to be feasible in sextic fields.
19#
發(fā)表于 2025-3-24 22:08:28 | 只看該作者
Introduction,s. As we shall see, this algorithmic problem is satisfactorily solved for lower degree number fields (especially for cubic and quartic fields) and there are efficient methods for certain classes of higher degree fields. Our algorithms enable us in many cases to describe all power integral bases also in . of certain number fields.
20#
發(fā)表于 2025-3-25 02:01:26 | 只看該作者
Quartic Fields,ex form equation can be reduced to a cubic and some corresponding quartic Thue equations (see Section 6.1). This means that in fact the index form equations in quartic fields are not much harder to solve than in the cubic case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高雄县| 水城县| 广宁县| 北辰区| 渑池县| 蓝田县| 平利县| 陆川县| 桦甸市| 离岛区| 涡阳县| 海丰县| 龙海市| 台中市| 南漳县| 临江市| 罗甸县| 漠河县| 当雄县| 同心县| 汝州市| 称多县| 沾化县| 横山县| 富阳市| 江安县| 霍州市| 资源县| 滦南县| 安吉县| 安顺市| 台中市| 沙田区| 洛川县| 都江堰市| 双鸭山市| 剑川县| 昔阳县| 肥东县| 霍山县| 侯马市|