找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Covariances in Computer Vision and Machine Learning; Hà Quang Minh,Vittorio Murino Book 2018 Springer Nature Switzerland AG 2018

[復(fù)制鏈接]
樓主: 毛發(fā)
31#
發(fā)表于 2025-3-26 21:14:09 | 只看該作者
Conclusion and Future Outlookmodel . in the input data, can substantially outperform finite-dimensional covariance matrices, which only model . in the input. This performance gain comes at higher computational costs and we showed how to substantially decrease these costs via approximation methods.
32#
發(fā)表于 2025-3-27 01:58:25 | 只看該作者
measures between images can then be chosen to be distances/divergences between the corresponding covariance matrices, or equivalently, distances/divergences between the corresponding multivariate Gaussian probability distributions, which will be presented in Chapter 2.
33#
發(fā)表于 2025-3-27 05:57:04 | 只看該作者
Data Representation by Covariance Matrices measures between images can then be chosen to be distances/divergences between the corresponding covariance matrices, or equivalently, distances/divergences between the corresponding multivariate Gaussian probability distributions, which will be presented in Chapter 2.
34#
發(fā)表于 2025-3-27 10:13:43 | 只看該作者
2153-1056 computer vision and image processing, they give rise to a powerful data representation, namely the covariance descriptor, with numerous practical applications...In this book, we begin by presenting an overview of the {it finite-dimensional covariance matrix} representation approach of images, along
35#
發(fā)表于 2025-3-27 17:20:40 | 只看該作者
Book 2018ision and image processing, they give rise to a powerful data representation, namely the covariance descriptor, with numerous practical applications...In this book, we begin by presenting an overview of the {it finite-dimensional covariance matrix} representation approach of images, along with its s
36#
發(fā)表于 2025-3-27 19:21:29 | 只看該作者
Kernel Methods on Covariance Operatorsrnel machine with the Log-Euclidean distance and inner product presented in Chapter 3 can be viewed as a special case of this framework, with the kernel in the first layer being the linear kernel. Along with kernels defined using the exact Log-Hilbert-Schmidt distance, we present kernels defined usi
37#
發(fā)表于 2025-3-27 22:26:17 | 只看該作者
38#
發(fā)表于 2025-3-28 05:06:27 | 只看該作者
39#
發(fā)表于 2025-3-28 08:22:32 | 只看該作者
40#
發(fā)表于 2025-3-28 12:04:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 03:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
喀喇沁旗| 如东县| 山丹县| 鲁山县| 云霄县| 漠河县| 湖南省| 宜春市| 文昌市| 阳朔县| 德江县| 临洮县| 长子县| 云南省| 托克托县| 通化县| 磴口县| 清流县| 方山县| 西盟| 商洛市| 崇义县| 双牌县| 贵德县| 通州市| 宁晋县| 浦江县| 和平县| 呼伦贝尔市| 尉犁县| 河东区| 福贡县| 林甸县| 保定市| 清新县| 佛冈县| 合水县| 大理市| 和田县| 通江县| 华蓥市|