找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Covariances in Computer Vision and Machine Learning; Hà Quang Minh,Vittorio Murino Book 2018 Springer Nature Switzerland AG 2018

[復制鏈接]
樓主: 毛發(fā)
21#
發(fā)表于 2025-3-25 04:45:45 | 只看該作者
stances and divergences between them, we now discuss some of the most important problems encountered in practical applications, namely classification and regression on SPD matrices. In machine learning, a prominent paradigm for solving classification and regression problems is that of kernel methods
22#
發(fā)表于 2025-3-25 09:40:50 | 只看該作者
is chapter, by employing the feature map viewpoint of kernel methods in machine learning, we generalize covariance matrices to infinite-dimensional covariance operators in RKHS. Since they encode . between input features, they can be employed as a powerful form of data representation, which we explo
23#
發(fā)表于 2025-3-25 13:21:29 | 只看該作者
24#
發(fā)表于 2025-3-25 18:12:42 | 只看該作者
an distance, and Log-Hilbert-Schmidt distance and inner product between RKHS covariance operators. In this chapter, we show how the Hilbert-Schmidt and Log-Hilbert-Schmidt distances and inner products can be used to define positive definite kernels, allowing us to apply kernel methods on top of cova
25#
發(fā)表于 2025-3-25 22:42:48 | 只看該作者
26#
發(fā)表于 2025-3-26 03:02:37 | 只看該作者
978-3-031-00692-0Springer Nature Switzerland AG 2018
27#
發(fā)表于 2025-3-26 07:26:51 | 只看該作者
28#
發(fā)表于 2025-3-26 10:32:22 | 只看該作者
an distances and divergences intrinsic to SPD matrices, as described in Chapter 2, it is necessary to define new positive definite kernels based on these distances and divergences. In this chapter, we describe these kernels and the corresponding kernel methods.
29#
發(fā)表于 2025-3-26 14:02:12 | 只看該作者
model . in the input data, can substantially outperform finite-dimensional covariance matrices, which only model . in the input. This performance gain comes at higher computational costs and we showed how to substantially decrease these costs via approximation methods.
30#
發(fā)表于 2025-3-26 17:27:02 | 只看該作者
Kernel Methods on Covariance Matricesan distances and divergences intrinsic to SPD matrices, as described in Chapter 2, it is necessary to define new positive definite kernels based on these distances and divergences. In this chapter, we describe these kernels and the corresponding kernel methods.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-25 03:33
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
万全县| 丘北县| 许昌市| 博客| 抚顺市| 江源县| 海盐县| 旬阳县| 莒南县| 仁寿县| 汉寿县| 大兴区| 塘沽区| 灵璧县| 雷州市| 望都县| 吉木萨尔县| 长治县| 上思县| 长泰县| 保亭| 马尔康县| 白朗县| 临朐县| 静乐县| 准格尔旗| 陇川县| 丹东市| 九江县| 东兰县| 万山特区| 青河县| 恩平市| 康定县| 彰化县| 柏乡县| 合水县| 右玉县| 安达市| 禄劝| 鹤山市|