找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Covariances in Computer Vision and Machine Learning; Hà Quang Minh,Vittorio Murino Book 2018 Springer Nature Switzerland AG 2018

[復制鏈接]
樓主: 毛發(fā)
11#
發(fā)表于 2025-3-23 10:22:35 | 只看該作者
12#
發(fā)表于 2025-3-23 14:08:47 | 只看該作者
13#
發(fā)表于 2025-3-23 22:01:49 | 只看該作者
14#
發(fā)表于 2025-3-24 02:04:25 | 只看該作者
Introduction,eir applications in many disciplines in science and engineering. The practical applications of SPD matrices are numerous, including Diffusion Tensor Imaging (DTI) in brain imaging [5, 29, 66, 95], kernel learning [2, 60] in machine learning, radar signal processing [3, 9, 40], and Brain Computer Interface (BCI) applications [7, 8, 24, 100].
15#
發(fā)表于 2025-3-24 03:54:47 | 只看該作者
16#
發(fā)表于 2025-3-24 08:06:55 | 只看該作者
Data Representation by Covariance Operatorsis chapter, by employing the feature map viewpoint of kernel methods in machine learning, we generalize covariance matrices to infinite-dimensional covariance operators in RKHS. Since they encode . between input features, they can be employed as a powerful form of data representation, which we explore in subsequent chapters.
17#
發(fā)表于 2025-3-24 13:57:09 | 只看該作者
Geometry of Covariance Operatorsrators. These distances and divergences can then be directly employed in a practical application, e.g., image classification. We emphasize, however, that the concepts we present below are general and applicable in any application involving the comparison of covariance operators.
18#
發(fā)表于 2025-3-24 18:20:01 | 只看該作者
19#
發(fā)表于 2025-3-24 22:26:56 | 只看該作者
We then present a statistical interpretation of this framework, which shows that assuming that an image can be represented by a covariance matrix is essentially equivalent to assuming that its features are random variables generated by a multivariate Gaussian probability distribution with mean zero
20#
發(fā)表于 2025-3-25 01:49:59 | 只看該作者
d images by covariance matrices, this means that we need to have a similarity measure between covariance matrices. Since covariance matrices, properly regularized if necessary, are symmetric, positive definite (SPD matrices), a natural approach to measuring their similarity is via a distance (or dis
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
鄂尔多斯市| 中阳县| 东乌| 丰都县| 乌拉特中旗| 新兴县| 东至县| 安岳县| 汉沽区| 灵璧县| 鄢陵县| 西丰县| 江安县| 夏邑县| 尚义县| 揭西县| 云霄县| 合肥市| 连平县| 孟州市| 西和县| 北辰区| 宜兰县| 新疆| 和林格尔县| 庆阳市| 宜都市| 英山县| 丰镇市| 大冶市| 铜鼓县| 大同市| 石嘴山市| 大荔县| 那曲县| 哈巴河县| 乌拉特中旗| 资源县| 尤溪县| 淄博市| 灌云县|