找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Covariances in Computer Vision and Machine Learning; Hà Quang Minh,Vittorio Murino Book 2018 Springer Nature Switzerland AG 2018

[復制鏈接]
查看: 46121|回復: 41
樓主
發(fā)表于 2025-3-21 18:36:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Covariances in Computer Vision and Machine Learning
編輯Hà Quang Minh,Vittorio Murino
視頻videohttp://file.papertrans.cn/240/239189/239189.mp4
叢書名稱Synthesis Lectures on Computer Vision
圖書封面Titlebook: Covariances in Computer Vision and Machine Learning;  Hà Quang Minh,Vittorio Murino Book 2018 Springer Nature Switzerland AG 2018
描述.Covariance matrices play important roles in many areas of mathematics, statistics, and machine learning, as well as their applications. In computer vision and image processing, they give rise to a powerful data representation, namely the covariance descriptor, with numerous practical applications...In this book, we begin by presenting an overview of the {it finite-dimensional covariance matrix} representation approach of images, along with its statistical interpretation. In particular, we discuss the various distances and divergences that arise from the intrinsic geometrical structures of the set of Symmetric Positive Definite (SPD) matrices, namely Riemannian manifold and convex cone structures. Computationally, we focus on kernel methods on covariance matrices, especially using the Log-Euclidean distance...We then show some of the latest developments in the generalization of the finite-dimensional covariance matrix representation to the {it infinite-dimensional covariance operator} representationvia positive definite kernels. We present the generalization of the affine-invariant Riemannian metric and the Log-Hilbert-Schmidt metric, which generalizes the Log-Euclidean distance. C
出版日期Book 2018
版次1
doihttps://doi.org/10.1007/978-3-031-01820-6
isbn_softcover978-3-031-00692-0
isbn_ebook978-3-031-01820-6Series ISSN 2153-1056 Series E-ISSN 2153-1064
issn_series 2153-1056
copyrightSpringer Nature Switzerland AG 2018
The information of publication is updating

書目名稱Covariances in Computer Vision and Machine Learning影響因子(影響力)




書目名稱Covariances in Computer Vision and Machine Learning影響因子(影響力)學科排名




書目名稱Covariances in Computer Vision and Machine Learning網絡公開度




書目名稱Covariances in Computer Vision and Machine Learning網絡公開度學科排名




書目名稱Covariances in Computer Vision and Machine Learning被引頻次




書目名稱Covariances in Computer Vision and Machine Learning被引頻次學科排名




書目名稱Covariances in Computer Vision and Machine Learning年度引用




書目名稱Covariances in Computer Vision and Machine Learning年度引用學科排名




書目名稱Covariances in Computer Vision and Machine Learning讀者反饋




書目名稱Covariances in Computer Vision and Machine Learning讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:51:58 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:57:33 | 只看該作者
Geometry of SPD Matricesd images by covariance matrices, this means that we need to have a similarity measure between covariance matrices. Since covariance matrices, properly regularized if necessary, are symmetric, positive definite (SPD matrices), a natural approach to measuring their similarity is via a distance (or dis
地板
發(fā)表于 2025-3-22 07:03:35 | 只看該作者
Kernel Methods on Covariance Matricesstances and divergences between them, we now discuss some of the most important problems encountered in practical applications, namely classification and regression on SPD matrices. In machine learning, a prominent paradigm for solving classification and regression problems is that of kernel methods
5#
發(fā)表于 2025-3-22 12:02:59 | 只看該作者
6#
發(fā)表于 2025-3-22 16:21:12 | 只看該作者
7#
發(fā)表于 2025-3-22 20:54:32 | 只看該作者
Kernel Methods on Covariance Operatorsan distance, and Log-Hilbert-Schmidt distance and inner product between RKHS covariance operators. In this chapter, we show how the Hilbert-Schmidt and Log-Hilbert-Schmidt distances and inner products can be used to define positive definite kernels, allowing us to apply kernel methods on top of cova
8#
發(fā)表于 2025-3-22 22:13:57 | 只看該作者
9#
發(fā)表于 2025-3-23 03:12:35 | 只看該作者
Covariances in Computer Vision and Machine Learning978-3-031-01820-6Series ISSN 2153-1056 Series E-ISSN 2153-1064
10#
發(fā)表于 2025-3-23 05:37:27 | 只看該作者
eir applications in many disciplines in science and engineering. The practical applications of SPD matrices are numerous, including Diffusion Tensor Imaging (DTI) in brain imaging [5, 29, 66, 95], kernel learning [2, 60] in machine learning, radar signal processing [3, 9, 40], and Brain Computer Interface (BCI) applications [7, 8, 24, 100].
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-25 05:10
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
怀安县| 乌海市| 沙坪坝区| 赤壁市| 濮阳县| 建宁县| 白城市| 会东县| 五原县| 南皮县| 永修县| 扶余县| 清新县| 屯留县| 天峨县| 翁牛特旗| 马尔康县| 宜良县| 新和县| 平和县| 洛浦县| 闸北区| 涡阳县| 邵阳市| 汕尾市| 赤城县| 潼南县| 榆树市| 双峰县| 遵义市| 开化县| 安福县| 缙云县| 绥宁县| 哈密市| 金乡县| 木兰县| 天柱县| 明水县| 蒙山县| 南皮县|