找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bodies of Constant Width; An Introduction to C Horst Martini,Luis Montejano,Déborah Oliveros Textbook 2019 Springer Nature Switzerland AG 2

[復(fù)制鏈接]
樓主: 夸大
11#
發(fā)表于 2025-3-23 11:10:14 | 只看該作者
12#
發(fā)表于 2025-3-23 15:18:31 | 只看該作者
https://doi.org/10.1007/b138658it can be completed to a body of constant width. These results are known as the Theorems of Meissner and Pál, respectively. Section . will be devoted to the study of reduced convex bodies, a notion somehow “dual” to completeness, and in Section . we complete convex bodies preserving some of their original characteristics, such as symmetries.
13#
發(fā)表于 2025-3-23 19:01:13 | 只看該作者
14#
發(fā)表于 2025-3-24 00:13:51 | 只看該作者
15#
發(fā)表于 2025-3-24 04:24:47 | 只看該作者
Bodies of Constant Width in Topology,bic dodecahedron circumscribing the sphere of diameter 1 is a universal cover in .. Finally, in Section . the topology and the geometry of Grassmannian spaces are used to see how big or complicated a collection of constant width sections should be such that the original body is of constant width.
16#
發(fā)表于 2025-3-24 10:03:10 | 只看該作者
17#
發(fā)表于 2025-3-24 12:53:44 | 只看該作者
18#
發(fā)表于 2025-3-24 18:27:28 | 只看該作者
Basic Properties of Bodies of Constant Width,rds of a convex body that have maximum length, and it is their behavior which gives constant width bodies their basic properties. Unlike the diameters of a ball, those of a body of constant width do not always meet at a single point, but when they do so, it is because the body is indeed a ball.
19#
發(fā)表于 2025-3-24 19:56:08 | 只看該作者
Systems of Lines in the Plane,nes, in particular those which are combined with a given convex set by a certain property. For example, the system of lines that leave a fixed proportion of area, or a fixed proportion of perimeter, in one side of the convex set for every direction. Consider, for instance, the collection of tangent
20#
發(fā)表于 2025-3-24 23:46:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 11:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河曲县| 翁源县| 潢川县| 郁南县| 子洲县| 屏边| 铁力市| 阿荣旗| 韩城市| 南靖县| 南陵县| 新源县| 庆云县| 黔西县| 娱乐| 旌德县| 留坝县| 淳安县| 江北区| 修文县| 白水县| 南郑县| 南溪县| 吉木萨尔县| 泸州市| 台中县| 冀州市| 漳平市| 蒙阴县| 济阳县| 鹰潭市| 宜昌市| 宜丰县| 德安县| 泗水县| 内乡县| 嘉兴市| 吴忠市| 永寿县| 安多县| 宁远县|