找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bodies of Constant Width; An Introduction to C Horst Martini,Luis Montejano,Déborah Oliveros Textbook 2019 Springer Nature Switzerland AG 2

[復(fù)制鏈接]
樓主: 夸大
41#
發(fā)表于 2025-3-28 18:03:06 | 只看該作者
Figures of Constant Width,In this chapter, bodies of constant width in the plane are studied. We call them figures of constant width. In studying them, it is important to recall from Section?. that the concepts “normal”, “binormal”, “diameter”, and “diametral chord” coincide.
42#
發(fā)表于 2025-3-28 21:31:50 | 只看該作者
Bodies of Constant Width in Minkowski Spaces,In Euclidean space, the length of a segment depends only on its magnitude, never on its direction. However, for certain geometrical problems the need arises to give a different definition for the length of a segment that depends on both the magnitude and the direction.
43#
發(fā)表于 2025-3-28 23:30:59 | 只看該作者
44#
發(fā)表于 2025-3-29 03:27:33 | 只看該作者
Mixed Volumes,The notion of . represents a profound concept first discovered by Minkowski in 1900. In the letter?[838] he wrote to Hilbert explaining his discoveries as interesting and quite enlightening. As we can see below, this concept will allow us to prove several classical theorems on the volume of constant width bodies in a somewhat unexpected way.
45#
發(fā)表于 2025-3-29 11:08:30 | 只看該作者
Bodies of Constant Width in Analysis,One of the most fascinating theorems on 3-dimensional bodies of constant width, stated and proved by H. Minkowski in 1904, is presented in this section.
46#
發(fā)表于 2025-3-29 14:03:49 | 只看該作者
47#
發(fā)表于 2025-3-29 16:48:31 | 只看該作者
48#
發(fā)表于 2025-3-29 23:25:54 | 只看該作者
Concepts Related to Constant Width,A polytope . is . about a convex body . if . and each facet of . intersects .; i.e., every facet of . is contained in a support hyperplane of .. A polytope . is . in the convex body . if . and each of its vertices belongs to ..
49#
發(fā)表于 2025-3-30 03:34:38 | 只看該作者
50#
發(fā)表于 2025-3-30 06:14:59 | 只看該作者
Springer Nature Switzerland AG 2019
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 11:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
穆棱市| 高陵县| 长汀县| 望城县| 怀柔区| 苍溪县| 淳化县| 郁南县| 临潭县| 清原| 莫力| 义乌市| 阿巴嘎旗| 泽库县| 吴旗县| 夏邑县| 应用必备| 理塘县| 辽源市| 晋州市| 上蔡县| 垣曲县| 湄潭县| 吕梁市| 依安县| 大渡口区| 枣庄市| 宜君县| 西吉县| 彭泽县| 工布江达县| 丹凤县| 甘南县| 巴彦县| 衡阳县| 曲靖市| 阿图什市| 浦城县| 延津县| 大竹县| 红河县|