找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bodies of Constant Width; An Introduction to C Horst Martini,Luis Montejano,Déborah Oliveros Textbook 2019 Springer Nature Switzerland AG 2

[復制鏈接]
樓主: 夸大
21#
發(fā)表于 2025-3-25 04:16:16 | 只看該作者
22#
發(fā)表于 2025-3-25 07:57:45 | 只看該作者
Examples and Constructions,ant width is undoubtedly the Reuleaux triangle of width . which is the intersection of three disks of radius . and whose boundary consists of three congruent circular arcs of radius .. In Section?., we will see that the Reuleaux triangle can be generalized to plane convex figures of constant width .
23#
發(fā)表于 2025-3-25 15:44:10 | 只看該作者
Sections of Bodies of Constant Width, was not a constructive one, that is, no nonconstant width section of a body of constant width was actually exhibited. In fact, it was proven that if all sections of a convex body have constant width, then the body is a ball. Since there are bodies of constant width other than the ball, it was concl
24#
發(fā)表于 2025-3-25 18:46:59 | 只看該作者
25#
發(fā)表于 2025-3-25 23:49:09 | 只看該作者
26#
發(fā)表于 2025-3-26 01:54:22 | 只看該作者
27#
發(fā)表于 2025-3-26 06:42:00 | 只看該作者
https://doi.org/10.1007/b138350rds of a convex body that have maximum length, and it is their behavior which gives constant width bodies their basic properties. Unlike the diameters of a ball, those of a body of constant width do not always meet at a single point, but when they do so, it is because the body is indeed a ball.
28#
發(fā)表于 2025-3-26 09:18:25 | 只看該作者
29#
發(fā)表于 2025-3-26 15:54:24 | 只看該作者
30#
發(fā)表于 2025-3-26 18:25:10 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 11:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
涞水县| 共和县| 佳木斯市| 昌黎县| 呼图壁县| 平阴县| 昭觉县| 若羌县| 札达县| 龙门县| 葫芦岛市| 梓潼县| 托克托县| 玉林市| 新河县| 肥城市| 高碑店市| 通城县| 陆良县| 改则县| 石阡县| 库车县| 黔东| 肃宁县| 武安市| 凯里市| 舒城县| 安徽省| 临汾市| 秭归县| 冀州市| 英山县| 甘肃省| 修武县| 沽源县| 山丹县| 永定县| 隆化县| 乐平市| 民和| 蓬溪县|