找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bodies of Constant Width; An Introduction to C Horst Martini,Luis Montejano,Déborah Oliveros Textbook 2019 Springer Nature Switzerland AG 2

[復(fù)制鏈接]
樓主: 夸大
21#
發(fā)表于 2025-3-25 04:16:16 | 只看該作者
22#
發(fā)表于 2025-3-25 07:57:45 | 只看該作者
Examples and Constructions,ant width is undoubtedly the Reuleaux triangle of width . which is the intersection of three disks of radius . and whose boundary consists of three congruent circular arcs of radius .. In Section?., we will see that the Reuleaux triangle can be generalized to plane convex figures of constant width .
23#
發(fā)表于 2025-3-25 15:44:10 | 只看該作者
Sections of Bodies of Constant Width, was not a constructive one, that is, no nonconstant width section of a body of constant width was actually exhibited. In fact, it was proven that if all sections of a convex body have constant width, then the body is a ball. Since there are bodies of constant width other than the ball, it was concl
24#
發(fā)表于 2025-3-25 18:46:59 | 只看該作者
25#
發(fā)表于 2025-3-25 23:49:09 | 只看該作者
26#
發(fā)表于 2025-3-26 01:54:22 | 只看該作者
27#
發(fā)表于 2025-3-26 06:42:00 | 只看該作者
https://doi.org/10.1007/b138350rds of a convex body that have maximum length, and it is their behavior which gives constant width bodies their basic properties. Unlike the diameters of a ball, those of a body of constant width do not always meet at a single point, but when they do so, it is because the body is indeed a ball.
28#
發(fā)表于 2025-3-26 09:18:25 | 只看該作者
29#
發(fā)表于 2025-3-26 15:54:24 | 只看該作者
30#
發(fā)表于 2025-3-26 18:25:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 13:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东方市| 泸定县| 山阴县| 三明市| 田阳县| 屏山县| 通州区| 巍山| 务川| 上栗县| 承德县| 海门市| 乐亭县| 张家港市| 永福县| 南部县| 乌恰县| 金溪县| 乳山市| 巴彦淖尔市| 平邑县| 汉阴县| 淮阳县| 阿巴嘎旗| 中卫市| 鄂尔多斯市| 五家渠市| 邳州市| 垫江县| 桓台县| 贵州省| 保康县| 定西市| 扶沟县| 万载县| 来安县| 平顺县| 白城市| 隆子县| 深水埗区| 册亨县|