找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity of the One-phase Free Boundaries; Bozhidar Velichkov Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s) 2023 Ope

[復(fù)制鏈接]
查看: 11748|回復(fù): 49
樓主
發(fā)表于 2025-3-21 20:01:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Regularity of the One-phase Free Boundaries
編輯Bozhidar Velichkov
視頻videohttp://file.papertrans.cn/826/825566/825566.mp4
概述This book is open access, which means that you have free and unlimited access.Winner of the 2019 Book Prize of the Unione Matematica Italiana.Freely available to all readers, this book is open access.
叢書(shū)名稱Lecture Notes of the Unione Matematica Italiana
圖書(shū)封面Titlebook: Regularity of the One-phase Free Boundaries;  Bozhidar Velichkov Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s) 2023 Ope
描述This open access book is an introduction to the regularity theory for free boundary problems. The focus is on the one-phase Bernoulli problem, which is of particular interest as it deeply influenced the development of the modern free boundary regularity theory and is still an object of intensive research.?.The exposition is organized around four main theorems, which are dedicated to the one-phase functional in its simplest form. Many of the methods and the techniques presented here are very recent and were developed in the context of different free boundary problems. We also give the detailed proofs of several classical results, which are based on some universal ideas and are recurrent in the free boundary, PDE and the geometric regularity theories..This book is aimed at graduate students and researches and is accessible to anyone with a moderate level of knowledge of elliptical PDEs..
出版日期Book‘‘‘‘‘‘‘‘ 2023
關(guān)鍵詞Open Access; Free Boundary Problems; Regularity; One-phase Problem; Bernoulli Free Boundary Problem; Alt-
版次1
doihttps://doi.org/10.1007/978-3-031-13238-4
isbn_softcover978-3-031-13237-7
isbn_ebook978-3-031-13238-4Series ISSN 1862-9113 Series E-ISSN 1862-9121
issn_series 1862-9113
copyrightThe Editor(s) (if applicable) and The Author(s) 2023
The information of publication is updating

書(shū)目名稱Regularity of the One-phase Free Boundaries影響因子(影響力)




書(shū)目名稱Regularity of the One-phase Free Boundaries影響因子(影響力)學(xué)科排名




書(shū)目名稱Regularity of the One-phase Free Boundaries網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Regularity of the One-phase Free Boundaries網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Regularity of the One-phase Free Boundaries被引頻次




書(shū)目名稱Regularity of the One-phase Free Boundaries被引頻次學(xué)科排名




書(shū)目名稱Regularity of the One-phase Free Boundaries年度引用




書(shū)目名稱Regularity of the One-phase Free Boundaries年度引用學(xué)科排名




書(shū)目名稱Regularity of the One-phase Free Boundaries讀者反饋




書(shū)目名稱Regularity of the One-phase Free Boundaries讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:14:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:29:59 | 只看該作者
地板
發(fā)表于 2025-3-22 08:33:01 | 只看該作者
5#
發(fā)表于 2025-3-22 10:32:46 | 只看該作者
la terapia medico-nucleare, tali particelle possono essere suddivise in α (nuclei di elio) e β. (elettroni in senso classico); a loro volta gli elettroni comprendono una sottocategoria particolare, gli elettroni di Auger, che possiedono alcune caratteristiche che li distinguono da tutti gli altri. I
6#
發(fā)表于 2025-3-22 16:46:57 | 只看該作者
Bozhidar Velichkove della materia trattata e per le applicazioni, il testo può essere utilmente adottato anche nei Corsi di Laurea specialistica in Bioingegneria..978-88-470-2332-1978-88-470-2333-8Series ISSN 2038-5714 Series E-ISSN 2532-3318
7#
發(fā)表于 2025-3-22 18:20:48 | 只看該作者
8#
發(fā)表于 2025-3-22 22:27:42 | 只看該作者
9#
發(fā)表于 2025-3-23 03:52:21 | 只看該作者
Existence of Solutions, Qualitative Properties and Examples,In this section, we prove that local minimizers of the functional . do exist (Proposition .) and we give several important examples of local minimizers that can be computed explicitly (Proposition ., Lemmas . and .).
10#
發(fā)表于 2025-3-23 05:53:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 05:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家界市| 宁波市| 小金县| 勃利县| 佛冈县| 石景山区| 松江区| 台北县| 页游| 黄山市| 阳山县| 苏尼特左旗| 阳谷县| 贞丰县| 太康县| 枝江市| 怀远县| 门源| 汉川市| 肥乡县| 永川市| 平湖市| 漠河县| 元谋县| 临高县| 汪清县| 城固县| 高青县| 平安县| 龙江县| 彭山县| 明星| 红安县| 梓潼县| 手机| 澎湖县| 合肥市| 英德市| 罗定市| 江城| 车险|