找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity of the One-phase Free Boundaries; Bozhidar Velichkov Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s) 2023 Ope

[復(fù)制鏈接]
樓主: 小巷
11#
發(fā)表于 2025-3-23 11:46:12 | 只看該作者
Non-degeneracy of the Local Minimizers,In this section we prove the non-degeneracy of the solutions to the one-phase problem (.). Our main result is the following.
12#
發(fā)表于 2025-3-23 16:34:20 | 只看該作者
Measure and Dimension of the Free Boundary,This chapter is dedicated to the measure theoretic structure of the free boundary . Ω.. The results presented here are mainly a consequence of the Lipschitz continuity and the non-degeneracy of the minimizer . (Theorem . and Proposition .).
13#
發(fā)表于 2025-3-23 20:54:50 | 只看該作者
14#
發(fā)表于 2025-3-23 22:20:56 | 只看該作者
15#
發(fā)表于 2025-3-24 05:08:26 | 只看該作者
The Weiss Monotonicity Formula and Its Consequences,This chapter is dedicated to the monotonicity formula for the boundary adjusted energy introduced by Weiss in [.]. Precisely, for every Λ?≥?0 and every .?∈?..(..).
16#
發(fā)表于 2025-3-24 09:53:36 | 只看該作者
Dimension of the Singular Set,In this chapter, we prove Theorem .. As in the original work of Weiss (see [.]), we will use the so-called Federer’s dimension reduction principle, which first appeared in [.].
17#
發(fā)表于 2025-3-24 14:14:38 | 只看該作者
18#
發(fā)表于 2025-3-24 15:42:52 | 只看該作者
An Epiperimetric Inequality Approach to the Regularity of the One-Phase Free Boundaries,Throughout this section, we will use the notation . where .. is the unit ball in ., .?≥?2 and .?∈?..(..).
19#
發(fā)表于 2025-3-24 19:42:02 | 只看該作者
20#
發(fā)表于 2025-3-25 03:02:51 | 只看該作者
978-3-031-13237-7The Editor(s) (if applicable) and The Author(s) 2023
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-17 20:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泰和县| 桐梓县| 邢台县| 莎车县| 阿荣旗| 吴川市| 水富县| 荣成市| 乌鲁木齐县| 巴林右旗| 文水县| 龙州县| 辽宁省| 当雄县| 象山县| 察雅县| 天长市| 洛隆县| 中西区| 东丽区| 全南县| 阜南县| 平舆县| 开远市| 磴口县| 周至县| 静海县| 顺平县| 饶河县| 闽清县| 拉萨市| 东阳市| 犍为县| 巨鹿县| 绵阳市| 宜君县| 长阳| 子长县| 绵竹市| 汉川市| 自治县|