找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity of the One-phase Free Boundaries; Bozhidar Velichkov Book‘‘‘‘‘‘‘‘ 2023 The Editor(s) (if applicable) and The Author(s) 2023 Ope

[復制鏈接]
樓主: 小巷
11#
發(fā)表于 2025-3-23 11:46:12 | 只看該作者
Non-degeneracy of the Local Minimizers,In this section we prove the non-degeneracy of the solutions to the one-phase problem (.). Our main result is the following.
12#
發(fā)表于 2025-3-23 16:34:20 | 只看該作者
Measure and Dimension of the Free Boundary,This chapter is dedicated to the measure theoretic structure of the free boundary . Ω.. The results presented here are mainly a consequence of the Lipschitz continuity and the non-degeneracy of the minimizer . (Theorem . and Proposition .).
13#
發(fā)表于 2025-3-23 20:54:50 | 只看該作者
14#
發(fā)表于 2025-3-23 22:20:56 | 只看該作者
15#
發(fā)表于 2025-3-24 05:08:26 | 只看該作者
The Weiss Monotonicity Formula and Its Consequences,This chapter is dedicated to the monotonicity formula for the boundary adjusted energy introduced by Weiss in [.]. Precisely, for every Λ?≥?0 and every .?∈?..(..).
16#
發(fā)表于 2025-3-24 09:53:36 | 只看該作者
Dimension of the Singular Set,In this chapter, we prove Theorem .. As in the original work of Weiss (see [.]), we will use the so-called Federer’s dimension reduction principle, which first appeared in [.].
17#
發(fā)表于 2025-3-24 14:14:38 | 只看該作者
18#
發(fā)表于 2025-3-24 15:42:52 | 只看該作者
An Epiperimetric Inequality Approach to the Regularity of the One-Phase Free Boundaries,Throughout this section, we will use the notation . where .. is the unit ball in ., .?≥?2 and .?∈?..(..).
19#
發(fā)表于 2025-3-24 19:42:02 | 只看該作者
20#
發(fā)表于 2025-3-25 03:02:51 | 只看該作者
978-3-031-13237-7The Editor(s) (if applicable) and The Author(s) 2023
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-17 07:41
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
吉木乃县| 繁昌县| 兰州市| 隆安县| 东乌珠穆沁旗| 怀柔区| 伊川县| 康保县| 紫阳县| 台江县| 灵宝市| 武安市| 石阡县| 会东县| 福建省| 邯郸市| 湘阴县| 铅山县| 哈巴河县| 秭归县| 泰来县| 平罗县| 东山县| 武山县| 黄冈市| 图木舒克市| 曲松县| 沂源县| 筠连县| 运城市| 南溪县| 南和县| 东平县| 锦屏县| 黎平县| 吉木萨尔县| 贺兰县| 平凉市| 平南县| 仁怀市| 凤冈县|