找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Notes on Functional Analysis; Rajendra Bhatia Book 2009 Hindustan Book Agency (India) 2009

[復制鏈接]
查看: 31165|回復: 65
樓主
發(fā)表于 2025-3-21 16:41:37 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Notes on Functional Analysis
編輯Rajendra Bhatia
視頻videohttp://file.papertrans.cn/669/668252/668252.mp4
叢書名稱Texts and Readings in Mathematics
圖書封面Titlebook: Notes on Functional Analysis;  Rajendra Bhatia Book 2009 Hindustan Book Agency (India) 2009
描述These notes are a record of a one semester course on Functional Analysis given by the author to second year Master of Statistics students at the Indian Statistical Institute, New Delhi. Students taking this course have a strong background in real analysis, linear algebra, measure theory and probability, and the course proceeds rapidly from the definition of a normed linear space to the spectral theorem for bounded selfadjoint operators in a Hilbert space. The book is organised as twenty six lectures, each corresponding to a ninety minute class session. This may be helpful to teachers planning a course on this topic. Well prepared students can read it on their own.
出版日期Book 2009
版次1
doihttps://doi.org/10.1007/978-93-86279-45-3
isbn_ebook978-93-86279-45-3
copyrightHindustan Book Agency (India) 2009
The information of publication is updating

書目名稱Notes on Functional Analysis影響因子(影響力)




書目名稱Notes on Functional Analysis影響因子(影響力)學科排名




書目名稱Notes on Functional Analysis網絡公開度




書目名稱Notes on Functional Analysis網絡公開度學科排名




書目名稱Notes on Functional Analysis被引頻次




書目名稱Notes on Functional Analysis被引頻次學科排名




書目名稱Notes on Functional Analysis年度引用




書目名稱Notes on Functional Analysis年度引用學科排名




書目名稱Notes on Functional Analysis讀者反饋




書目名稱Notes on Functional Analysis讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:22:25 | 只看該作者
Dimensionality,Let . be a vector space and let . be a subset of it. We say . is . if for every finite subset {.,…, .} of ., the equation.holds if and only if . = . = ? = . = 0. A (finite) sum like the one in (2.1) is called a . of .,…, ..
板凳
發(fā)表于 2025-3-22 04:08:53 | 只看該作者
New Banach Spaces from Old,Let . be a vector space and . a subspace of it. Say that two elements . and . of . are ., . ~ ., if . ? . ∈ .. This is an equivalence relation on .. The coset of . under this relation is the set..Let . be the collection of all these cosets. If we set.then . is a vector space with these operations.
地板
發(fā)表于 2025-3-22 05:33:58 | 只看該作者
5#
發(fā)表于 2025-3-22 12:01:55 | 只看該作者
The Uniform Boundedness Principle,The . says that a complete metric space cannot be the union of a countable number of nowhere dense sets. This has several very useful consequences. One of them is the Uniform Boundedness Principle (U.B.P.) also called the ..
6#
發(fā)表于 2025-3-22 15:50:24 | 只看該作者
7#
發(fā)表于 2025-3-22 19:27:23 | 只看該作者
Dual Spaces,The idea of duality, and the associated notion of adjointness, are important in functional analysis. We will identify the spaces .* for some of the standard Banach spaces.
8#
發(fā)表于 2025-3-23 00:06:08 | 只看該作者
9#
發(fā)表于 2025-3-23 04:05:25 | 只看該作者
The Second Dual and the Weak* Topology,The dual of .* is another Banach space .**. This is called the . or the . of .. Let . be the map from . into .** that associates with . ∈ . the element . ∈ .** defined as. Then . is a linear map and ‖.‖ = ‖.‖. (See (9.2).) Thus . is an . and we can regard . as a subspace of .**.
10#
發(fā)表于 2025-3-23 07:53:21 | 只看該作者
Orthonormal Bases,A subset . in a Hilbert space is said to be an . if 〈., .〉 = 0 for all ., . in . (. ∈ .), and ‖.‖ = 1 for all . in ..
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 12:31
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乌兰浩特市| 平泉县| 宁波市| 明溪县| 澎湖县| 西贡区| 博白县| 墨竹工卡县| 三穗县| 南召县| 满洲里市| 吴旗县| 康定县| 横山县| 综艺| 云和县| 青海省| 开江县| 略阳县| 娱乐| 句容市| 香格里拉县| 海阳市| 乌苏市| 林口县| 扶绥县| 文安县| 南皮县| 吉林省| 桐庐县| 鹰潭市| 大新县| 梧州市| 云梦县| 彭山县| 岚皋县| 凤山县| 曲靖市| 榆林市| 万盛区| 昭觉县|