找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Notes on Functional Analysis; Rajendra Bhatia Book 2009 Hindustan Book Agency (India) 2009

[復制鏈接]
樓主: CT951
11#
發(fā)表于 2025-3-23 12:28:22 | 只看該作者
12#
發(fā)表于 2025-3-23 17:30:10 | 只看該作者
13#
發(fā)表于 2025-3-23 21:01:02 | 只看該作者
Some Special Operators in Hilbert Space,The additional structure in a Hilbert space and its self-duality make the adjoint operation especially interesting. All Hilbert spaces that we consider are over complex scalars except when we say otherwise.
14#
發(fā)表于 2025-3-24 00:44:21 | 只看該作者
15#
發(fā)表于 2025-3-24 05:07:12 | 只看該作者
The Weak Topology,uniformly. There are other notions of convergence that are weaker, and still very useful in analysis. This is the motivation for studying different topologies on spaces of functions, and on general Banach spaces.
16#
發(fā)表于 2025-3-24 06:47:18 | 只看該作者
17#
發(fā)表于 2025-3-24 13:23:52 | 只看該作者
The Resolvent and The Spectrum,lues of .. In infinite dimensions there are complications that arise from the fact that an operator could fail to be invertible in different ways. Finding the spectrum is not an easy problem even in the finite-dimensional case; it is much more difficult in infinite dimensions.
18#
發(fā)表于 2025-3-24 15:22:55 | 只看該作者
Subdivision of the Spectrum,eigenvalue. The adjoint of . is the left shift operator . on the space ?.. If λ is any complex number with |λ| ≤ 1, then the vector . = (1, λ, λ.,…) is in ?. and . = λ.. Thus . point λ in the disk . is an eigenvalue of .. This shows also that .(.) = .(.) = ..
19#
發(fā)表于 2025-3-24 22:08:17 | 只看該作者
Hindustan Book Agency (India) 2009
20#
發(fā)表于 2025-3-24 23:28:39 | 只看該作者
Texts and Readings in Mathematicshttp://image.papertrans.cn/n/image/668252.jpg
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
寻乌县| 岱山县| 定边县| 河池市| 乃东县| 犍为县| 勃利县| 嵊州市| 乌什县| 松滋市| 黔南| 金溪县| 松桃| 阿鲁科尔沁旗| 汪清县| 印江| 宜兰县| 耒阳市| 张掖市| 阿拉善盟| 祁阳县| 海城市| 名山县| 大兴区| 清丰县| 广汉市| 福贡县| 富蕴县| 林西县| 永城市| 青阳县| 揭阳市| 东安县| 郸城县| 阜新市| 宁安市| 东阳市| 靖州| 桦川县| 澄城县| 和平区|