找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Notes on Functional Analysis; Rajendra Bhatia Book 2009 Hindustan Book Agency (India) 2009

[復(fù)制鏈接]
樓主: CT951
11#
發(fā)表于 2025-3-23 12:28:22 | 只看該作者
12#
發(fā)表于 2025-3-23 17:30:10 | 只看該作者
13#
發(fā)表于 2025-3-23 21:01:02 | 只看該作者
Some Special Operators in Hilbert Space,The additional structure in a Hilbert space and its self-duality make the adjoint operation especially interesting. All Hilbert spaces that we consider are over complex scalars except when we say otherwise.
14#
發(fā)表于 2025-3-24 00:44:21 | 只看該作者
15#
發(fā)表于 2025-3-24 05:07:12 | 只看該作者
The Weak Topology,uniformly. There are other notions of convergence that are weaker, and still very useful in analysis. This is the motivation for studying different topologies on spaces of functions, and on general Banach spaces.
16#
發(fā)表于 2025-3-24 06:47:18 | 只看該作者
17#
發(fā)表于 2025-3-24 13:23:52 | 只看該作者
The Resolvent and The Spectrum,lues of .. In infinite dimensions there are complications that arise from the fact that an operator could fail to be invertible in different ways. Finding the spectrum is not an easy problem even in the finite-dimensional case; it is much more difficult in infinite dimensions.
18#
發(fā)表于 2025-3-24 15:22:55 | 只看該作者
Subdivision of the Spectrum,eigenvalue. The adjoint of . is the left shift operator . on the space ?.. If λ is any complex number with |λ| ≤ 1, then the vector . = (1, λ, λ.,…) is in ?. and . = λ.. Thus . point λ in the disk . is an eigenvalue of .. This shows also that .(.) = .(.) = ..
19#
發(fā)表于 2025-3-24 22:08:17 | 只看該作者
Hindustan Book Agency (India) 2009
20#
發(fā)表于 2025-3-24 23:28:39 | 只看該作者
Texts and Readings in Mathematicshttp://image.papertrans.cn/n/image/668252.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 12:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
廉江市| 霍林郭勒市| 鲁山县| 澄城县| 新密市| 白城市| 进贤县| 辰溪县| 胶南市| 温泉县| 轮台县| 瑞昌市| 北辰区| 旬邑县| 大埔县| 东台市| 玉屏| 阿合奇县| 湖州市| 彩票| 习水县| 广安市| 中宁县| 平遥县| 荃湾区| 宁陵县| 青岛市| 青铜峡市| 日喀则市| 清镇市| 庆安县| 通海县| 夹江县| 怀宁县| 子长县| 伽师县| 遂平县| 五峰| 青浦区| 大方县| 边坝县|