找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Properties of Banach Spaces and Nonlinear Iterations; Charles Chidume Book 2009 Springer-Verlag London 2009 45XX.46XX.47XX.49XX.

[復(fù)制鏈接]
樓主: dejected
41#
發(fā)表于 2025-3-28 18:00:23 | 只看該作者
The Medial Patellofemoral Ligament approximating fixed points of operators belonging to subclasses of these classes of nonlinear mappings and defined in appropriate Banach spaces have been flourishing areas of research for many mathematicians. For the classes of mappings mentioned here in (.) to (.), we show in this chapter that mod
42#
發(fā)表于 2025-3-28 18:48:38 | 只看該作者
43#
發(fā)表于 2025-3-29 02:19:58 | 只看該作者
44#
發(fā)表于 2025-3-29 04:23:31 | 只看該作者
45#
發(fā)表于 2025-3-29 09:49:43 | 只看該作者
https://doi.org/10.1007/978-1-84882-190-345XX; 46XX; 47XX; 49XX; 65XX; 68XX; Convexity; Families of operators; Hammerstein equations; Iterative method
46#
發(fā)表于 2025-3-29 11:33:54 | 只看該作者
Charles ChidumeSelf-contained, with detailed motivations, explanations and examples.In-depth, comprehensive and up-to-date coverage.Contains interesting, important and reasonable open problems.Summaries of key inequ
47#
發(fā)表于 2025-3-29 17:22:41 | 只看該作者
Implementing an Auditing Program,r product, ?.,.?. In this chapter, we present the notion of . which will provide us with a pairing between elements of a normed space . and elements of its dual space .*, which we shall also denote by ?.,.? and will serve as a suitable analogue of the inner product in Hilbert spaces.
48#
發(fā)表于 2025-3-29 20:57:57 | 只看該作者
49#
發(fā)表于 2025-3-30 01:28:15 | 只看該作者
50#
發(fā)表于 2025-3-30 04:14:08 | 只看該作者
Generalized Lipschitz Pseudo-contractive and Accretive Mappings,lized Lipschitz accretive operators (assuming exis tence). These classes of mappings have been defined in Chapter 12. Fur thermore, the iteration scheme introduced here and the method of proof are of independent interest.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
攀枝花市| 南充市| 自治县| 翁牛特旗| 桃源县| 肥西县| 化德县| 方城县| 西藏| 临沂市| 永年县| 商南县| 富源县| 腾冲县| 连山| 无棣县| 宿迁市| 镇康县| 铁岭县| 昆明市| 鄯善县| 玉树县| 永泰县| 汝城县| 桦川县| 安阳县| 道真| 交城县| 精河县| 阜阳市| 年辖:市辖区| 宝丰县| 大关县| 承德县| 原阳县| 黑龙江省| 五家渠市| 克什克腾旗| 祁连县| 互助| 镇远县|