找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Geometric Properties of Banach Spaces and Nonlinear Iterations; Charles Chidume Book 2009 Springer-Verlag London 2009 45XX.46XX.47XX.49XX.

[復(fù)制鏈接]
樓主: dejected
51#
發(fā)表于 2025-3-30 09:27:18 | 只看該作者
,Iteration Processes for Zeros of Generalized Ф —Accretive Mappings,
52#
發(fā)表于 2025-3-30 16:21:57 | 只看該作者
53#
發(fā)表于 2025-3-30 19:36:12 | 只看該作者
54#
發(fā)表于 2025-3-30 22:13:58 | 只看該作者
Book 2009)||y|| ??(1??)||x?y|| , (??) which hold for all x,y? H, are some of the geometric properties that char- terize inner product spaces and also make certain problems posed in Hilbert spaces more manageable than those in general Banach spaces. However, as has been rightly observed by M. Hazewinkel, “...
55#
發(fā)表于 2025-3-31 01:34:56 | 只看該作者
56#
發(fā)表于 2025-3-31 07:25:11 | 只看該作者
ESD Protection for RF Circuits,[26], Bynum [61, 62], Clarkson [191], Lindenstrauss ([309], [310]), Hanner [247], Kay [276], Lim [306, 303], Lindenstrauss and Tzafriri [311], Prus and Smarzewski [387], Reich [408], Tribunov [491], Xu [509], Xu [523], Xu and Roach [525], and a host of other authors). In this chapter (and also in Ch
57#
發(fā)表于 2025-3-31 09:19:37 | 只看該作者
Some Geometric Properties of Banach Spaces,tudy of iterative algorithms for nonlinear operators in various Banach spaces..In this chapter, we introduce the classes of . and . spaces, and in Chapter 2, we shall introduce the class of .. All the results presented in these two chapters are well-known and standard and can be found in several boo
58#
發(fā)表于 2025-3-31 15:43:49 | 只看該作者
59#
發(fā)表于 2025-3-31 20:24:45 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石景山区| 台南县| 阳春市| 留坝县| 泽州县| 贡嘎县| 德惠市| 龙泉市| 宜昌市| 芜湖市| 夹江县| 榆树市| 嘉禾县| 蛟河市| 通许县| 本溪| 碌曲县| 宜昌市| 沾益县| 姜堰市| 陵水| 勃利县| 彝良县| 珲春市| 洛南县| 讷河市| 沙坪坝区| 黑龙江省| 贞丰县| 临漳县| 库车县| 娄烦县| 明水县| 辽阳市| 怀化市| 思茅市| 九寨沟县| 定兴县| 青田县| 延寿县| 航空|