找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Properties of Banach Spaces and Nonlinear Iterations; Charles Chidume Book 2009 Springer-Verlag London 2009 45XX.46XX.47XX.49XX.

[復(fù)制鏈接]
樓主: dejected
11#
發(fā)表于 2025-3-23 12:51:39 | 只看該作者
Generalized Lipschitz Accretive and Pseudo-contractive Mappings,class of Lipschitz mappings and the class of mappings with bounded range is that of .. In this chapter, by means of an iteration process introduced by Chidume and Ofoedu [152], we prove con vergence theorems for fixed points of . Lipschitz pseudo-contractive mappings in real Banach spaces.
12#
發(fā)表于 2025-3-23 17:17:26 | 只看該作者
13#
發(fā)表于 2025-3-23 21:24:20 | 只看該作者
14#
發(fā)表于 2025-3-24 01:11:50 | 只看該作者
Book 2009his area: geometric properties of Banach spaces and nonlinear iterations, a topic of intensive research e?orts, especially within the past 30 years, or so. In this theory, some geometric properties of Banach spaces play a crucial role. In the ?rst part of the monograph, we expose these geometric pro
15#
發(fā)表于 2025-3-24 04:31:41 | 只看該作者
16#
發(fā)表于 2025-3-24 09:23:06 | 只看該作者
Common Fixed Points for Countable Families of Nonexpansive Mappings,ences are proved for . families of nonexpansive mappings defined in Hilbert spaces..Convergence theorems have also been proved for common fixed points of countable . families of nonexpansive mappings. Before we proceed, we first state the following important theorem.
17#
發(fā)表于 2025-3-24 11:12:26 | 只看該作者
978-1-84882-189-7Springer-Verlag London 2009
18#
發(fā)表于 2025-3-24 17:41:27 | 只看該作者
Geometric Properties of Banach Spaces and Nonlinear Iterations978-1-84882-190-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
19#
發(fā)表于 2025-3-24 21:22:45 | 只看該作者
20#
發(fā)表于 2025-3-25 01:57:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛隆县| 乐清市| 禄劝| 沐川县| 隆化县| 楚雄市| 莱阳市| 西丰县| 高青县| 黎城县| 南陵县| 桑植县| 包头市| 彭州市| 厦门市| 富顺县| 策勒县| 神农架林区| 南安市| 万宁市| 莎车县| 定襄县| 天峨县| 疏附县| 都江堰市| 本溪市| 淮北市| 江阴市| 肇庆市| 安岳县| 拉萨市| 旬阳县| 昆山市| 洛阳市| 九江县| 茶陵县| 巩义市| 仙桃市| 清新县| 深圳市| 横峰县|