找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Knots, Low-Dimensional Topology and Applications; Knots in Hellas, Int Colin C. Adams,Cameron McA. Gordon,Radmila Sazdano Conference procee

[復(fù)制鏈接]
樓主: FERAL
51#
發(fā)表于 2025-3-30 11:00:45 | 只看該作者
Algebraic and Computational Aspects of Quandle 2-Cocycle Invariant,diagrams by quandles. Quandle 2-cocycles can be also used to define extensions as in the case of groups. There are relations among algebraic properties of quandles, their homology theories, and cocycle invariants; certain algebraic properties of quandles affect the values of the cocycle invariants,
52#
發(fā)表于 2025-3-30 15:34:39 | 只看該作者
A Survey of Quantum Enhancements,of quantum invariants of knots with colorings by various algebraic objects over the set of such colorings. This class of invariants includes classical skein invariants and quandle and biquandle cocycle invariants as well as new invariants.
53#
發(fā)表于 2025-3-30 20:30:17 | 只看該作者
54#
發(fā)表于 2025-3-30 21:38:48 | 只看該作者
,A Survey of Grid Diagrams and a Proof of Alexander’s Theorem,er gives an introduction to grid diagrams and demonstrates their programmable viability in an algorithmic proof of Alexander’s Theorem. Throughout, there are detailed comments on how to program a computer to encode the diagrams and algorithms.
55#
發(fā)表于 2025-3-31 02:25:51 | 只看該作者
Extending the Classical Skein,he invariant .[.] is based on a procedure where we apply the skein relation only to crossings of distinct components, so as to produce collections of unlinked knots and then we evaluate the resulting knots using the invariant . and inserting at the same time a new parameter. This procedure, remarkab
56#
發(fā)表于 2025-3-31 05:25:26 | 只看該作者
57#
發(fā)表于 2025-3-31 13:16:00 | 只看該作者
58#
發(fā)表于 2025-3-31 16:00:50 | 只看該作者
Knot Invariants in Lens Spaces,omial of links in lens spaces, which we represent by mixed link diagrams. These invariants generalize the corresponding knot polynomials in the classical case. We compare the invariants by means of the ability to distinguish between some difficult cases of knots with certain symmetries.
59#
發(fā)表于 2025-3-31 20:24:54 | 只看該作者
60#
發(fā)表于 2025-4-1 00:23:34 | 只看該作者
A Survey on Knotoids, Braidoids and Their Applications,analogous to classical braids, forming a counterpart theory to the theory of knotoids in the plane. We survey through the fundamental notions and existing works on these objects as well as their applications in the study of proteins.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赫章县| 昭平县| 庄河市| 临清市| 新安县| 九寨沟县| 当涂县| 崇左市| 临漳县| 东方市| 临城县| 儋州市| 仪陇县| 舒兰市| 凤凰县| 历史| 星子县| 扶风县| 原平市| 曲松县| 栖霞市| 白水县| 哈密市| 铜陵市| 临澧县| 荥经县| 且末县| 游戏| 武威市| 延庆县| 扎兰屯市| 利辛县| 应城市| 阳西县| 揭西县| 德安县| 孝感市| 建昌县| 肃南| 海林市| 全南县|