找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Knots, Low-Dimensional Topology and Applications; Knots in Hellas, Int Colin C. Adams,Cameron McA. Gordon,Radmila Sazdano Conference procee

[復(fù)制鏈接]
樓主: FERAL
31#
發(fā)表于 2025-3-26 22:51:42 | 只看該作者
Knots, Low-Dimensional Topology and Applications978-3-030-16031-9Series ISSN 2194-1009 Series E-ISSN 2194-1017
32#
發(fā)表于 2025-3-27 01:49:24 | 只看該作者
Colin C. Adams,Cameron McA. Gordon,Radmila SazdanoCollection of high-quality, state-of-the-art research and survey articles.Top researchers, including Fields Medal winner like Vaughan Jones.Research in new directions, new tools and methods
33#
發(fā)表于 2025-3-27 07:43:56 | 只看該作者
34#
發(fā)表于 2025-3-27 09:46:21 | 只看該作者
35#
發(fā)表于 2025-3-27 15:27:35 | 只看該作者
36#
發(fā)表于 2025-3-27 20:16:01 | 只看該作者
37#
發(fā)表于 2025-3-27 22:36:32 | 只看該作者
From Alternating to Quasi-Alternating Links,In this short survey, we introduce the class of quasi-alternating links and review some of their basic properties. In particular, we discuss the obstruction criteria for links to be quasi-alternating introduced recently in terms of quantum link invariants.
38#
發(fā)表于 2025-3-28 03:58:58 | 只看該作者
39#
發(fā)表于 2025-3-28 09:48:22 | 只看該作者
,Towards a Version of Markov’s Theorem for Ribbon Torus-Links in ,In classical knot theory, Markov’s theorem gives a way of describing all braids with isotopic closures as links in?.. We present a version of Markov’s theorem for extended loop braids with closure in?., as a first step towards a Markov’s theorem for extended loop braids and ribbon torus-links in?..
40#
發(fā)表于 2025-3-28 12:58:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
承德市| 陵川县| 临沂市| 孝昌县| 来宾市| 黄梅县| 嘉善县| 阿拉善右旗| 株洲县| 桦川县| 甘洛县| 都江堰市| 湄潭县| 桂平市| 佳木斯市| 曲麻莱县| 武汉市| 章丘市| 且末县| 丰都县| 新乡县| 凤冈县| 杭锦后旗| 阿拉善盟| 攀枝花市| 云阳县| 米林县| 禹城市| 镇原县| 望都县| 本溪市| 铅山县| 漳平市| 彭州市| 乌拉特前旗| 永新县| 柘荣县| 朝阳市| 育儿| 三河市| 葫芦岛市|