找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Knots, Low-Dimensional Topology and Applications; Knots in Hellas, Int Colin C. Adams,Cameron McA. Gordon,Radmila Sazdano Conference procee

[復(fù)制鏈接]
樓主: FERAL
21#
發(fā)表于 2025-3-25 05:38:19 | 只看該作者
,Knot Theory: From Fox 3-Colorings of Links to Yang–Baxter Homology and Khovanov Homology,logy to Khovanov homology we build homology of distributive structures (including homology of Fox colorings) and generalize it to homology of Yang–Baxter operators. We speculate, with supporting evidence, on co-cycle invariants of knots coming from Yang–Baxter homology. Here the work of Fenn–Rourke–
22#
發(fā)表于 2025-3-25 10:46:44 | 只看該作者
Identity Theorem for Pro-,-groups,ider the problems of pro-.-groups theory through the prism of Tannaka duality, concentrating on the category of representations. In particular we attach special importance to the existence of identities in free pro-.-groups (“conjurings”).
23#
發(fā)表于 2025-3-25 11:42:41 | 只看該作者
24#
發(fā)表于 2025-3-25 18:07:43 | 只看該作者
25#
發(fā)表于 2025-3-25 23:27:03 | 只看該作者
26#
發(fā)表于 2025-3-26 03:40:14 | 只看該作者
27#
發(fā)表于 2025-3-26 04:28:07 | 只看該作者
,From the Framisation of the Temperley–Lieb Algebra to the Jones Polynomial: An Algebraic Approach,ey–Lieb algebras. We use this result to obtain a closed combinatorial formula for the invariants for classical links obtained from a Markov trace on the Framisation of the Temperley–Lieb algebra. For a given link ., this formula involves the Jones polynomials of all sublinks of ., as well as linking numbers.
28#
發(fā)表于 2025-3-26 11:35:39 | 只看該作者
Knot Invariants in Lens Spaces,omial of links in lens spaces, which we represent by mixed link diagrams. These invariants generalize the corresponding knot polynomials in the classical case. We compare the invariants by means of the ability to distinguish between some difficult cases of knots with certain symmetries.
29#
發(fā)表于 2025-3-26 16:15:04 | 只看該作者
30#
發(fā)表于 2025-3-26 20:49:07 | 只看該作者
978-3-030-16033-3Springer Nature Switzerland AG 2019
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
花莲县| 吉安县| 临潭县| 和田市| 团风县| 宜章县| 丁青县| 东乡| 长宁县| 墨玉县| 海原县| 台北县| 福贡县| 鄄城县| 望城县| 梅州市| 固镇县| 玛多县| 鹿邑县| 巴彦县| 福泉市| 罗田县| 平山县| 西宁市| 九江县| 临汾市| 乐至县| 武冈市| 青州市| 延安市| 临猗县| 郓城县| 囊谦县| 定西市| 江北区| 宝坻区| 南宁市| 玉溪市| 喀喇沁旗| 全州县| 鹤庆县|