找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Axiomatic Set Theory; Gaisi Takeuti,Wilson M. Zaring Textbook 19711st edition Springer-Verlag Berlin Heidelberg 1971 arith

[復(fù)制鏈接]
樓主: patch-test
41#
發(fā)表于 2025-3-28 15:26:47 | 只看該作者
Classes, i.e., given a wff . (.) containing no free variables other than x, there exists a set that contains all objects for which . (.) holds and contains no object for which .(.) does not hold. More formally ..
42#
發(fā)表于 2025-3-28 20:22:33 | 只看該作者
Ordinal Numbers,925) and Bertrand Russell (1872–1970), working independently, who removed Cantor’s numbers from the realm of psychology. In 1903 Russell defined an ordinal number to be an equivalence class of well ordered sets under order isomorphism.
43#
發(fā)表于 2025-3-29 00:49:37 | 只看該作者
44#
發(fā)表于 2025-3-29 03:41:46 | 只看該作者
45#
發(fā)表于 2025-3-29 09:25:13 | 只看該作者
The Arithmetization of Model Theory, a set, that is, “m is a standard model of ZF” can be expressed as a single sentence in ZF. The basic objective of this section is to produce such a sentence. Our approach is to assign G?del numbers to the well formed formulas of our language. This assignment will be made by the mapping . of Definition 15.2.
46#
發(fā)表于 2025-3-29 12:10:46 | 只看該作者
47#
發(fā)表于 2025-3-29 16:10:30 | 只看該作者
48#
發(fā)表于 2025-3-29 21:40:37 | 只看該作者
Equality,uivalent under alphabetic change of variable, we intend . to be an abbreviation for. This problem is easily resolved by specifying that . is the first variable an our list . that is distinct from . and from .. Having thereby shown that we can specify a particular formula we will not bother to do so
49#
發(fā)表于 2025-3-30 00:38:28 | 只看該作者
50#
發(fā)表于 2025-3-30 06:26:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 19:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
句容市| 嘉善县| 武穴市| 武川县| 西昌市| 化隆| 昌吉市| 古田县| 含山县| 江都市| 高唐县| 盐源县| 贺州市| 托克托县| 呼图壁县| 鲁山县| 镇康县| 南城县| 嘉义县| 莲花县| 楚雄市| 黎城县| 东阿县| 临澧县| 迁安市| 南川市| 郎溪县| 滦平县| 南和县| 阳城县| 嫩江县| 磐安县| 武义县| 岳普湖县| 阜康市| 新龙县| 麻江县| 哈巴河县| 逊克县| 锡林浩特市| 彩票|