找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Axiomatic Set Theory; Gaisi Takeuti,Wilson M. Zaring Textbook 19711st edition Springer-Verlag Berlin Heidelberg 1971 arith

[復制鏈接]
樓主: patch-test
21#
發(fā)表于 2025-3-25 06:00:51 | 只看該作者
Gaisi Takeuti,Wilson M. Zaringt the City University of New York (Lehman College and the Graduate Center). He is the author of the two other graduate texts: Additive Number Theory: The Classi978-1-4757-7392-7978-0-387-22738-2Series ISSN 0072-5285 Series E-ISSN 2197-5612
22#
發(fā)表于 2025-3-25 08:49:07 | 只看該作者
Gaisi Takeuti,Wilson M. Zaringt the City University of New York (Lehman College and the Graduate Center). He is the author of the two other graduate texts: Additive Number Theory: The Classi978-1-4757-7392-7978-0-387-22738-2Series ISSN 0072-5285 Series E-ISSN 2197-5612
23#
發(fā)表于 2025-3-25 12:12:13 | 只看該作者
Introduction, was the culmination of three decades of research on number “aggregates”. Beginning with his paper on the denumerability of infinite sets., published in 1874, Cantor had built a new theory of the infinite. In this theory a collection of objects, even an infinite collection, is conceived of as a single entity.
24#
發(fā)表于 2025-3-25 19:41:58 | 只看該作者
Equality,uivalent under alphabetic change of variable, we intend . to be an abbreviation for. This problem is easily resolved by specifying that . is the first variable an our list . that is distinct from . and from .. Having thereby shown that we can specify a particular formula we will not bother to do so either here or in similar definitions to follow.
25#
發(fā)表于 2025-3-25 20:21:10 | 只看該作者
Relational Closure and the Rank Function,ally interested in sets that are transitive. While there exist sets that are not transitive every set has a transitive extension. Indeed, every set has a smallest transitive extension which we call its transitive closure.
26#
發(fā)表于 2025-3-26 02:09:00 | 只看該作者
The Fundamental Operations,tially as the union of a sequence of sets .., . ∈ On which were so defined that . ∈ .. iff there exists a wff .(.., .., ..., ..) having no free variables other than .., .., ... , .. and there exist .. , ..., .. ∈ .. such that ..
27#
發(fā)表于 2025-3-26 06:07:53 | 只看該作者
28#
發(fā)表于 2025-3-26 11:02:19 | 只看該作者
Springer-Verlag Berlin Heidelberg 1971
29#
發(fā)表于 2025-3-26 15:41:08 | 只看該作者
Introduction to Axiomatic Set Theory978-1-4684-9915-5Series ISSN 0072-5285 Series E-ISSN 2197-5612
30#
發(fā)表于 2025-3-26 20:32:01 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/i/image/473452.jpg
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 19:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
三明市| 平利县| 琼海市| 当涂县| 会同县| 青铜峡市| 鸡西市| 平和县| 云霄县| 甘南县| 建瓯市| 宜宾县| 岚皋县| 榆社县| 翁源县| 光泽县| 沧州市| 甘肃省| 建湖县| 玉门市| 芦溪县| 南华县| 万宁市| 渭源县| 科尔| 贵溪市| 宜宾市| 吴旗县| 太湖县| 兴业县| 永泰县| 东兰县| 河间市| 通化市| 莱州市| 增城市| 手机| 绵阳市| 瓦房店市| 新蔡县| 九龙县|