找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Introduction to Axiomatic Set Theory; Gaisi Takeuti,Wilson M. Zaring Textbook 19711st edition Springer-Verlag Berlin Heidelberg 1971 arith

[復(fù)制鏈接]
樓主: patch-test
31#
發(fā)表于 2025-3-26 23:44:01 | 只看該作者
https://doi.org/10.1007/978-1-4684-9915-5arithmetic; axiom of choice; function; logic; ordinal; set; set theory
32#
發(fā)表于 2025-3-27 03:26:29 | 只看該作者
Language and Logic,The language of our theory consists of
33#
發(fā)表于 2025-3-27 06:54:16 | 只看該作者
The Elementary Properties of Classes,In this section we will introduce certain properties of classes with which the reader is already familiar. The immediate consequences of the definitions are for the most part elementary and easily proved; consequently they will be left to the reader as exercises.
34#
發(fā)表于 2025-3-27 12:39:15 | 只看該作者
Ordinal Arithmetic,In Section 7 we defined . + 1 to be . ∪ {.}. We proved that . + 1 is an ordinal, that is, . + 1 is a transitive set that is well ordered by the ∈-relation. As a well ordered set . + 1 has an initial segment . and its “terminal” segment beginning with . consists of just a single element, namely ..
35#
發(fā)表于 2025-3-27 17:40:42 | 只看該作者
Cardinal Numbers,The equivalence of sets is basic to the theory of cardinal numbers. Two sets are equivalent, or equipollent, provided there exists a one-to-one correspondence between them.
36#
發(fā)表于 2025-3-27 18:29:28 | 只看該作者
37#
發(fā)表于 2025-3-27 23:06:11 | 只看該作者
38#
發(fā)表于 2025-3-28 04:42:20 | 只看該作者
39#
發(fā)表于 2025-3-28 08:32:41 | 只看該作者
40#
發(fā)表于 2025-3-28 10:42:25 | 只看該作者
,Cohen’s Method,In proving that the AC and the GCH are consistent with ZF G?del used the so called method of internal models. From the assumption that the universe . is a model of ZF G?del prescribed a method for producing a submodel . that is also a model of ., AC and GCH. This submodel is defined as the class of all sets having a certain property i.e. ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 19:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄平县| 金沙县| 佛冈县| 遵义县| 宁波市| 米易县| 曲靖市| 台北市| 甘泉县| 和平县| 万荣县| 潍坊市| 昔阳县| 曲靖市| 中卫市| 怀远县| 东港市| 渝北区| 宁乡县| 保山市| 腾冲县| 西林县| 漠河县| 大埔县| 毕节市| 濮阳市| 大邑县| 宣城市| 阳泉市| 怀来县| 南安市| 海原县| 娄底市| 克山县| 宜良县| 阳高县| 山丹县| 荆州市| 集安市| 波密县| 克东县|