找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Identit?tskonstruktionen und Lebenszeitverst?ndnis von Kindern; Identit?tsbezogene P Maren Zschach Book 2022 Der/die Herausgeber bzw. der/d

[復(fù)制鏈接]
樓主: polysomnography
11#
發(fā)表于 2025-3-23 13:08:46 | 只看該作者
12#
發(fā)表于 2025-3-23 13:51:26 | 只看該作者
13#
發(fā)表于 2025-3-23 18:19:11 | 只看該作者
14#
發(fā)表于 2025-3-24 01:18:27 | 只看該作者
15#
發(fā)表于 2025-3-24 06:04:44 | 只看該作者
16#
發(fā)表于 2025-3-24 07:27:57 | 只看該作者
Maren Zschachholistic approach with deep insights into the subject.IncludThis is a textbook on chaos and nonlinear dynamics, written by applied mathematicians for applied mathematicians. It aims to tread a middle ground between the mathematician‘s rigour and the physicist’s pragmatism..While the subject matter i
17#
發(fā)表于 2025-3-24 14:30:10 | 只看該作者
Maren Zschachween the mathematician‘s rigour and the physicist’s pragmatism..While the subject matter is now classical and can be found in many other books, what distinguishes this book is its philosophical approach, its breadth, its conciseness, and its exploration of intellectual byways, as well as its liberal
18#
發(fā)表于 2025-3-24 18:22:18 | 只看該作者
19#
發(fā)表于 2025-3-24 19:34:28 | 只看該作者
the system is called a flow, because their solution is continuous in time. When the rules are a set of discrete difference equations, the system is referred to as a map. The evolution of a dynamical system is best described in its phase space, a coordinate system whose coordinates are all the variab
20#
發(fā)表于 2025-3-25 01:13:38 | 只看該作者
Maren Zschach nonlinear problems should be treated as nonlinear problems and not as simplified linear problems. The theoretical aspects ofchaos have been presented in great detail in several excellent books published in the last five years or so. However, while the problems associated with applications of the th
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-18 07:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
柳州市| 迭部县| 陈巴尔虎旗| 漯河市| 江阴市| 凌云县| 大足县| 白沙| 桃园县| 玉溪市| 长寿区| 剑河县| 察隅县| 德庆县| 黔江区| 平阳县| 灵石县| 集贤县| 铜山县| 沅江市| 元阳县| 苍山县| 如东县| 花莲县| 工布江达县| 辉县市| 安阳市| 青龙| 锦州市| 崇明县| 仁布县| 泰安市| 四子王旗| 江源县| 忻城县| 洪泽县| 瑞昌市| 北辰区| 天柱县| 古田县| 汉中市|