找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Defining Relations in Groups; A. Yu. Ol’shanskii Book 1991 Springer Science+Business Media Dordrecht 1991 Abelian group.Group

[復(fù)制鏈接]
樓主: CAP
21#
發(fā)表于 2025-3-25 05:45:11 | 只看該作者
0169-6378 Overview: 978-94-010-5605-2978-94-011-3618-1Series ISSN 0169-6378
22#
發(fā)表于 2025-3-25 08:52:04 | 只看該作者
23#
發(fā)表于 2025-3-25 15:18:02 | 只看該作者
https://doi.org/10.1007/978-3-663-05970-7r on all pairs of elements (that all proper subgroups are cyclic or that certain identities in two variables hold, as in Chapter 9). In this the final chapter, we consider another type of universal restriction on the elements of a group, namely, the conjugacy of any pair of elements satisfying certain natural conditions.
24#
發(fā)表于 2025-3-25 16:52:16 | 只看該作者
Partitions of Relators,ns of groups of a certain specific type. The partitions of the boundaries of cells are induced by natural decompositions of relators. In this chapter we study basic properties of presentations of this kind and, in Chapter 9, we find explicit forms of relators depending on the group-theoretic problem under consideration.
25#
發(fā)表于 2025-3-25 23:18:46 | 只看該作者
Conjugacy Relations,r on all pairs of elements (that all proper subgroups are cyclic or that certain identities in two variables hold, as in Chapter 9). In this the final chapter, we consider another type of universal restriction on the elements of a group, namely, the conjugacy of any pair of elements satisfying certain natural conditions.
26#
發(fā)表于 2025-3-26 00:34:38 | 只看該作者
27#
發(fā)表于 2025-3-26 08:01:23 | 只看該作者
28#
發(fā)表于 2025-3-26 09:23:47 | 只看該作者
,Einführung in das digitale Zeitalter,In §7 we considerednatural finiteness conditions which arose in the process of imposing on infinite abstract groups characteristic properties of finite groups.
29#
發(fā)表于 2025-3-26 15:47:24 | 只看該作者
30#
發(fā)表于 2025-3-26 20:30:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
化隆| 错那县| 儋州市| 郓城县| 浠水县| 乐平市| 宁津县| 怀远县| 宁城县| 峨眉山市| 南澳县| 包头市| 龙川县| 博野县| 麦盖提县| 盐亭县| 商都县| 清徐县| 凤阳县| 宣化县| 烟台市| 博湖县| 巢湖市| 高台县| 黑龙江省| 永靖县| 西乌珠穆沁旗| 卢龙县| 全州县| 亚东县| 镶黄旗| 明水县| 喀喇| 望奎县| 太仓市| 平乐县| 滁州市| 梅州市| 福鼎市| 潼南县| 察隅县|