找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Defining Relations in Groups; A. Yu. Ol’shanskii Book 1991 Springer Science+Business Media Dordrecht 1991 Abelian group.Group

[復(fù)制鏈接]
樓主: CAP
11#
發(fā)表于 2025-3-23 10:13:25 | 只看該作者
12#
發(fā)表于 2025-3-23 14:27:23 | 只看該作者
13#
發(fā)表于 2025-3-23 19:42:00 | 只看該作者
https://doi.org/10.1007/978-3-322-96725-1aded so that additional properties can be expected only in the case of maps satisfying special conditions. As we shall see, such conditions can hold for diagrams over presentations of many groups which do not satisfy conventional conditions of the form .(.) on the amount of cancellation between rela
14#
發(fā)表于 2025-3-24 01:00:21 | 只看該作者
Modellierung der Lieferkettenresilienz,l formulations of the problem is as follows: is every periodic group with a finite number of generators finite? Under the extra condition of solubility, the answer is positive and quite simple (Corollary 7.1). The answer is also positive for matrix groups over fields (see Burnside [33], Schur [225],
15#
發(fā)表于 2025-3-24 02:53:47 | 只看該作者
,Führungsaufgaben des IT-Managements,f the cells were distinguished as special. Of course, power relations are a very special type of defining relation. Many group properties are connected with relations of a more complicated form. For instance, we considered in §13 a problem that led to relations containing long periodic words separat
16#
發(fā)表于 2025-3-24 09:11:40 | 只看該作者
17#
發(fā)表于 2025-3-24 14:15:00 | 只看該作者
18#
發(fā)表于 2025-3-24 16:55:50 | 只看該作者
19#
發(fā)表于 2025-3-24 20:41:45 | 只看該作者
978-94-010-5605-2Springer Science+Business Media Dordrecht 1991
20#
發(fā)表于 2025-3-25 02:13:22 | 只看該作者
Geometry of Defining Relations in Groups978-94-011-3618-1Series ISSN 0169-6378
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴楚县| 东宁县| 巍山| 五大连池市| 和田市| 长垣县| 比如县| 远安县| 金湖县| 门源| 沈丘县| 朝阳区| 景宁| 庐江县| 成安县| 象州县| 渭源县| 民权县| 泽库县| 上饶县| 方城县| 新营市| 松潘县| 梨树县| 扎囊县| 察隅县| 南平市| 黎川县| 岑溪市| 津南区| 莲花县| 昌邑市| 钦州市| 孝昌县| 徐闻县| 博罗县| 云梦县| 通榆县| 广饶县| 鲁山县| 双峰县|