找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Defining Relations in Groups; A. Yu. Ol’shanskii Book 1991 Springer Science+Business Media Dordrecht 1991 Abelian group.Group

[復制鏈接]
樓主: CAP
21#
發(fā)表于 2025-3-25 05:45:11 | 只看該作者
0169-6378 Overview: 978-94-010-5605-2978-94-011-3618-1Series ISSN 0169-6378
22#
發(fā)表于 2025-3-25 08:52:04 | 只看該作者
23#
發(fā)表于 2025-3-25 15:18:02 | 只看該作者
https://doi.org/10.1007/978-3-663-05970-7r on all pairs of elements (that all proper subgroups are cyclic or that certain identities in two variables hold, as in Chapter 9). In this the final chapter, we consider another type of universal restriction on the elements of a group, namely, the conjugacy of any pair of elements satisfying certain natural conditions.
24#
發(fā)表于 2025-3-25 16:52:16 | 只看該作者
Partitions of Relators,ns of groups of a certain specific type. The partitions of the boundaries of cells are induced by natural decompositions of relators. In this chapter we study basic properties of presentations of this kind and, in Chapter 9, we find explicit forms of relators depending on the group-theoretic problem under consideration.
25#
發(fā)表于 2025-3-25 23:18:46 | 只看該作者
Conjugacy Relations,r on all pairs of elements (that all proper subgroups are cyclic or that certain identities in two variables hold, as in Chapter 9). In this the final chapter, we consider another type of universal restriction on the elements of a group, namely, the conjugacy of any pair of elements satisfying certain natural conditions.
26#
發(fā)表于 2025-3-26 00:34:38 | 只看該作者
27#
發(fā)表于 2025-3-26 08:01:23 | 只看該作者
28#
發(fā)表于 2025-3-26 09:23:47 | 只看該作者
,Einführung in das digitale Zeitalter,In §7 we considerednatural finiteness conditions which arose in the process of imposing on infinite abstract groups characteristic properties of finite groups.
29#
發(fā)表于 2025-3-26 15:47:24 | 只看該作者
30#
發(fā)表于 2025-3-26 20:30:22 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 13:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
炎陵县| 兴国县| 阳泉市| 肇庆市| 广安市| 宣恩县| 林周县| 荣昌县| 忻城县| 治县。| 垦利县| 宜春市| 石狮市| 厦门市| 永年县| 舟曲县| 容城县| 大竹县| 安顺市| 永济市| 固原市| 宝丰县| 乐山市| 九龙城区| 马尔康县| 铁力市| 小金县| 拜城县| 清流县| 宜兴市| 屯昌县| 烟台市| 东港市| 开封市| 三明市| 巴青县| 邵阳县| 塔河县| 中卫市| 武冈市| 大名县|