找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Defining Relations in Groups; A. Yu. Ol’shanskii Book 1991 Springer Science+Business Media Dordrecht 1991 Abelian group.Group

[復(fù)制鏈接]
樓主: CAP
31#
發(fā)表于 2025-3-26 22:57:35 | 只看該作者
32#
發(fā)表于 2025-3-27 03:01:12 | 只看該作者
33#
發(fā)表于 2025-3-27 08:23:29 | 只看該作者
Extensions of Aspherical Groups,If the quotient group ./. of a group . by a normal subgroup . is isomorphic to a group . then we say that . is an . of . by .. Such an extension is called . if . is an abelian group. If . is in the centre of ., then we say that the extension is ..
34#
發(fā)表于 2025-3-27 13:11:24 | 只看該作者
35#
發(fā)表于 2025-3-27 15:13:04 | 只看該作者
36#
發(fā)表于 2025-3-27 19:22:38 | 只看該作者
https://doi.org/10.1007/978-3-322-96725-1or diagrams over presentations of many groups which do not satisfy conventional conditions of the form .(.) on the amount of cancellation between relators. We shall also develop some necessary machinery, whose application yields results as early as the next chapter.
37#
發(fā)表于 2025-3-27 22:18:27 | 只看該作者
38#
發(fā)表于 2025-3-28 05:41:44 | 只看該作者
39#
發(fā)表于 2025-3-28 07:59:50 | 只看該作者
40#
發(fā)表于 2025-3-28 10:39:43 | 只看該作者
Presentations in Free Products,ing relations needed to define this quotient group. Lyndon [146], [149] formulated an analogue of van Kampen’s lemma for free products and applied it to small cancellation free products. In Chapter 11, we extend the method and the techniques of Chapters 4–10 to diagrams over free products and apply them to quotient groups of free products.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 13:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴化市| 桂东县| 防城港市| 柘荣县| 交口县| 甘洛县| 绥德县| 英山县| 普洱| 达拉特旗| 洛南县| 宝清县| 通海县| 客服| 横山县| 交口县| 洪泽县| 洛隆县| 孟州市| 韩城市| 鸡泽县| 长丰县| 吉隆县| 合作市| 托克托县| 郯城县| 江川县| 类乌齐县| 安新县| 牡丹江市| 千阳县| 山丹县| 大同县| 柘城县| 福鼎市| 正阳县| 大田县| 彰武县| 昌图县| 古交市| 怀来县|