找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Continued Fractions; Oleg Karpenkov Textbook 20131st edition Springer-Verlag Berlin Heidelberg 2013 algebraic irrationalities.

[復(fù)制鏈接]
樓主: odometer
31#
發(fā)表于 2025-3-26 21:45:38 | 只看該作者
Integer Angles of Integer Triangles classical Euclidean criteria for congruence for triangles and present several examples. Further, we verify which triples of angles can be taken as angles of an integer triangle; this generalizes the Euclidean condition .+.+.=. for the angles of a triangle (this formula will be used later in Chap.?.
32#
發(fā)表于 2025-3-27 03:43:05 | 只看該作者
33#
發(fā)表于 2025-3-27 05:46:09 | 只看該作者
34#
發(fā)表于 2025-3-27 12:45:03 | 只看該作者
35#
發(fā)表于 2025-3-27 15:48:25 | 只看該作者
36#
發(fā)表于 2025-3-27 19:13:48 | 只看該作者
Geometry of Continued Fractions with Real Elements and Kepler’s Second Lawnatural extension of this interpretation to the case of continued fractions with arbitrary elements? The aim of this chapter is to answer this question..We start with a geometric interpretation of odd or infinite continued fractions with arbitrary elements in terms of broken lines in the plane havin
37#
發(fā)表于 2025-3-27 22:48:43 | 只看該作者
38#
發(fā)表于 2025-3-28 04:52:52 | 只看該作者
39#
發(fā)表于 2025-3-28 09:07:41 | 只看該作者
Basic Notions and Definitions of Multidimensional Integer Geometry integer invariants. Further, we use them to study the properties of multidimensional continued fractions. First, we introduce integer volumes of polytopes, integer distances, and integer angles. Then we express volumes of polytopes, integer distances, and integer angles in terms of integer volumes
40#
發(fā)表于 2025-3-28 13:58:15 | 只看該作者
On Empty Simplices, Pyramids, Parallelepipedsty tetrahedra and the classification of pyramids whose integer points are contained in the base of pyramids in .. Later in the book we essentially use the classification of the mentioned pyramids for studying faces of multidimensional continued fractions. In particular, the describing of such pyrami
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 12:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建始县| 双桥区| 桓仁| 瑞安市| 江源县| 黄骅市| 荣成市| 七台河市| 衢州市| 酉阳| 大庆市| 三明市| 望都县| 临海市| 大渡口区| 集贤县| 临沭县| 雷波县| 秀山| 临潭县| 互助| 友谊县| 虹口区| 阿拉尔市| 海盐县| 分宜县| 万源市| 噶尔县| 庆阳市| 尼勒克县| 北宁市| 赤城县| 呼和浩特市| 武汉市| 云阳县| 江津市| 蕉岭县| 重庆市| 巫溪县| 闽侯县| 镇赉县|