找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Continued Fractions; Oleg Karpenkov Textbook 20131st edition Springer-Verlag Berlin Heidelberg 2013 algebraic irrationalities.

[復(fù)制鏈接]
樓主: odometer
11#
發(fā)表于 2025-3-23 10:06:54 | 只看該作者
,Die Statik des starren K?rpers,this important subject (the study of best approximations, badly approximable numbers, etc.). In this chapter we consider two geometric questions of approximations by continued fractions. First, we prove two classical results on best approximations of real numbers by rational numbers. Second, we desc
12#
發(fā)表于 2025-3-23 14:15:30 | 只看該作者
13#
發(fā)表于 2025-3-23 19:26:01 | 只看該作者
,Einführung in die Kinematik und Kinetik,is not a natural question within the theory of continued fractions. One can hardly imagine any law to write the continued fraction for the sum directly. The main obstacle here is that the summation of rational numbers does not have a geometric explanation in terms of the integer lattice. In this cha
14#
發(fā)表于 2025-3-24 01:04:14 | 只看該作者
15#
發(fā)表于 2025-3-24 05:55:13 | 只看該作者
,Gleichgewicht gestützter K?rper, integer invariants. Further, we use them to study the properties of multidimensional continued fractions. First, we introduce integer volumes of polytopes, integer distances, and integer angles. Then we express volumes of polytopes, integer distances, and integer angles in terms of integer volumes
16#
發(fā)表于 2025-3-24 07:20:50 | 只看該作者
17#
發(fā)表于 2025-3-24 10:51:01 | 只看該作者
18#
發(fā)表于 2025-3-24 16:24:59 | 只看該作者
19#
發(fā)表于 2025-3-24 20:37:00 | 只看該作者
Oleg KarpenkovNew approach to the geometry of numbers, very visual and algorithmic.Numerous illustrations and examples.Problems for each chapter.Includes supplementary material:
20#
發(fā)表于 2025-3-24 23:34:24 | 只看該作者
Springer-Verlag Berlin Heidelberg 2013
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平乡县| 宕昌县| 道孚县| 平原县| 大安市| 临猗县| 贡嘎县| 招远市| 和平县| 新民市| 通渭县| 顺义区| 安泽县| 象州县| 方城县| 崇文区| 桂东县| 舒兰市| 康平县| 彭泽县| 万山特区| 襄城县| 西吉县| 政和县| 兴业县| 金平| 鄂托克旗| 宜城市| 金秀| 东辽县| 凌海市| 万安县| 大英县| 涿州市| 华阴市| 连南| 敦化市| 东乌珠穆沁旗| 措勤县| 翁牛特旗| 寻甸|