找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Continued Fractions; Oleg Karpenkov Textbook 20131st edition Springer-Verlag Berlin Heidelberg 2013 algebraic irrationalities.

[復(fù)制鏈接]
查看: 31019|回復(fù): 58
樓主
發(fā)表于 2025-3-21 18:44:29 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Geometry of Continued Fractions
編輯Oleg Karpenkov
視頻videohttp://file.papertrans.cn/384/383801/383801.mp4
概述New approach to the geometry of numbers, very visual and algorithmic.Numerous illustrations and examples.Problems for each chapter.Includes supplementary material:
叢書名稱Algorithms and Computation in Mathematics
圖書封面Titlebook: Geometry of Continued Fractions;  Oleg Karpenkov Textbook 20131st edition Springer-Verlag Berlin Heidelberg 2013 algebraic irrationalities.
描述.Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to?such areas as?Diophantine approximation, algebraic number theory, and toric geometry..?.The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses..
出版日期Textbook 20131st edition
關(guān)鍵詞algebraic irrationalities; continued fractions; generalized continued fractions; integer trigonometry; u
版次1
doihttps://doi.org/10.1007/978-3-642-39368-6
isbn_ebook978-3-642-39368-6Series ISSN 1431-1550
issn_series 1431-1550
copyrightSpringer-Verlag Berlin Heidelberg 2013
The information of publication is updating

書目名稱Geometry of Continued Fractions影響因子(影響力)




書目名稱Geometry of Continued Fractions影響因子(影響力)學(xué)科排名




書目名稱Geometry of Continued Fractions網(wǎng)絡(luò)公開度




書目名稱Geometry of Continued Fractions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry of Continued Fractions被引頻次




書目名稱Geometry of Continued Fractions被引頻次學(xué)科排名




書目名稱Geometry of Continued Fractions年度引用




書目名稱Geometry of Continued Fractions年度引用學(xué)科排名




書目名稱Geometry of Continued Fractions讀者反饋




書目名稱Geometry of Continued Fractions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:29:26 | 只看該作者
,L?sung der Fundamentalaufgaben,or infinite regular continued fractions. Further, we prove existence and uniqueness of continued fractions for a given number (odd and even continued fractions in the rational case). Finally, we discuss approximation properties of continued fractions.
板凳
發(fā)表于 2025-3-22 02:10:43 | 只看該作者
地板
發(fā)表于 2025-3-22 06:47:11 | 只看該作者
5#
發(fā)表于 2025-3-22 12:47:42 | 只看該作者
6#
發(fā)表于 2025-3-22 14:32:59 | 只看該作者
7#
發(fā)表于 2025-3-22 18:31:43 | 只看該作者
8#
發(fā)表于 2025-3-23 00:36:53 | 只看該作者
Grundgleichungen der Hydraulik,and unit determinant. We say that the matrices . and . from . are integer conjugate if there exists an . matrix . such that .=... A description of integer conjugacy classes in the two-dimensional case is the subject of Gauss’s reduction theory, where conjugacy classes are classified by periods of ce
9#
發(fā)表于 2025-3-23 02:46:43 | 只看該作者
Einführung in die Technische Mechanike Lagrange’s theorem stating that every quadratic irrationality has a periodic continued fraction, conversely that every periodic continued fraction is a quadratic irrationality. One of the ingredients to the proof of Lagrange theorem is the classical theorem on integer solutions of Pell’s equation
10#
發(fā)表于 2025-3-23 08:14:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 13:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
渑池县| 库尔勒市| 呼图壁县| 嘉义市| 肥西县| 桓台县| 海宁市| 沁源县| 丽水市| 哈巴河县| 永和县| 康定县| 宁德市| 象山县| 丹巴县| 屏山县| 凤台县| 儋州市| 吴桥县| 宜宾县| 东阳市| 琼海市| 南澳县| 桐乡市| 淄博市| 出国| 庐江县| 宣武区| 西藏| 武邑县| 肇源县| 昌邑市| 北宁市| 三门峡市| 资阳市| 托里县| 乌什县| 和龙市| 光泽县| 连城县| 沁源县|