找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Invariant Theory for Polarized Curves; Gilberto Bini,Fabio Felici,Filippo Viviani Book 2014 Springer International Publishing Sw

[復制鏈接]
樓主: 閃爍
41#
發(fā)表于 2025-3-28 15:13:10 | 只看該作者
https://doi.org/10.1007/978-3-319-11337-114L24,14H40,14C05,14H10,14D23,14B05; ; Compactified Jacobians; Geometric invariant theory; Hilbert and C
42#
發(fā)表于 2025-3-28 19:26:45 | 只看該作者
43#
發(fā)表于 2025-3-29 02:54:35 | 只看該作者
44#
發(fā)表于 2025-3-29 05:49:37 | 只看該作者
Introduction,y Mumford and his co-authors (see [MFK94]), was the construction of the moduli space .. of smooth curves of genus .?≥?2 and its compactification . via . (i.e. connected nodal projective curves with finite automorphism group), carried out by Mumford [Mum77] and Gieseker [Gie82].
45#
發(fā)表于 2025-3-29 09:20:40 | 只看該作者
46#
發(fā)表于 2025-3-29 11:46:14 | 只看該作者
Appendix: Positivity Properties of Balanced Line Bundles,The results obtained here are applied in this manuscript only for quasi-wp-stable curves; however we decided to present these results in the Gorenstein case for two reasons: firstly, we think that these results are interesting in their own (in particular we will generalize our proofs extend without
47#
發(fā)表于 2025-3-29 18:13:25 | 只看該作者
0075-8434 w semistable locus. As an application, we obtain three compactications of the universal Jacobian over the moduli space of stable curves, weakly-pseudo-stable curves and pseudo-stable curves, respectively..978-3-319-11336-4978-3-319-11337-1Series ISSN 0075-8434 Series E-ISSN 1617-9692
48#
發(fā)表于 2025-3-29 21:21:30 | 只看該作者
Book 2014 values a=3.5 and a=4, where the Hilbert semistable locus is strictly smaller than the Chow semistable locus. As an application, we obtain three compactications of the universal Jacobian over the moduli space of stable curves, weakly-pseudo-stable curves and pseudo-stable curves, respectively..
49#
發(fā)表于 2025-3-30 01:57:22 | 只看該作者
50#
發(fā)表于 2025-3-30 07:45:42 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
扶沟县| 土默特左旗| 遂昌县| 平舆县| 莲花县| 仁化县| 梁平县| 彰武县| 侯马市| 囊谦县| 海宁市| 安达市| 安国市| 赤水市| 江都市| 尚义县| 谢通门县| 晋宁县| 济阳县| 延寿县| 吴旗县| 闽侯县| 广宗县| 霍林郭勒市| 和平县| 甘肃省| 上犹县| 武安市| 阳信县| 子长县| 松江区| 南充市| 清河县| 灌云县| 宁德市| 蒙阴县| 龙门县| 陕西省| 嵊泗县| 公安县| 那曲县|