找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Invariant Theory for Polarized Curves; Gilberto Bini,Fabio Felici,Filippo Viviani Book 2014 Springer International Publishing Sw

[復(fù)制鏈接]
樓主: 閃爍
31#
發(fā)表于 2025-3-26 22:51:08 | 只看該作者
A Criterion of Stability for Tails,In this chapter we would like to state a criterion of stability for tails based on the Hilbert-Mumford criterion and on the parabolic group. Let . with .?>?2(2. ? 2), where . is the union of two curves .. and .. (of degrees ..,?.. and genus ..,?..) that intersect each other transversally in a single point ..
32#
發(fā)表于 2025-3-27 03:37:06 | 只看該作者
33#
發(fā)表于 2025-3-27 06:43:29 | 只看該作者
Semistable, Polystable and Stable Points (Part I),The aim of this chapter is to describe the points of Hilb. that are Hilbert or Chow semistable, polystable and stable for . The range . will be investigated later.
34#
發(fā)表于 2025-3-27 11:45:15 | 只看該作者
Stability of Elliptic Tails,In this chapter, we will use the criterion of stability for tails (Proposition?.) in order to study the stability of elliptic curves for .. We notice that in this range—by the basic inequality (.)—it suffices to consider the elliptic curves of degree 4.
35#
發(fā)表于 2025-3-27 16:00:21 | 只看該作者
36#
發(fā)表于 2025-3-27 19:26:48 | 只看該作者
37#
發(fā)表于 2025-3-27 23:09:47 | 只看該作者
Extra Components of the GIT Quotient,So far, we have considered the action of . over Hilb., and we have restricted our attention to . and ., the Chow or Hilbert semistable loci consisting of connected curves. It is very natural to ask if there are Chow or Hilbert semistable points . with . not connected. In this chapter we will answer this question.
38#
發(fā)表于 2025-3-28 03:49:00 | 只看該作者
39#
發(fā)表于 2025-3-28 07:03:19 | 只看該作者
40#
發(fā)表于 2025-3-28 11:43:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
都安| 徐水县| 嘉兴市| 尚义县| 昆明市| 齐齐哈尔市| 乐业县| 滨海县| 盐边县| 集贤县| 楚雄市| 道真| 九龙坡区| 蓝山县| 新巴尔虎右旗| 竹北市| 监利县| 措勤县| 东乡族自治县| 梅州市| 隆子县| 宜兰县| 札达县| 保山市| 黄骅市| 冕宁县| 两当县| 丰都县| 华亭县| 东台市| 大城县| 芜湖市| 双桥区| 连城县| 隆回县| 广宗县| 桐乡市| 巴里| 巴彦县| 灌云县| 囊谦县|