找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Invariant Theory for Polarized Curves; Gilberto Bini,Fabio Felici,Filippo Viviani Book 2014 Springer International Publishing Sw

[復(fù)制鏈接]
樓主: 閃爍
21#
發(fā)表于 2025-3-25 04:37:58 | 只看該作者
Anouar Belkacemi,Pieter R. StellaThe aim of this chapter is to describe the points of Hilb. that are Hilbert or Chow semistable, polystable and stable for . The GIT analysis in this range is based on a nice numerical trick that uses the following
22#
發(fā)表于 2025-3-25 08:31:56 | 只看該作者
A. Quinton,F. Zerbib,H. LamouliatteFor any .?>?2(2. ? 2), consider the open and closed subscheme . of the Chow-semistable locus . consisting of connected curves, see (.). From now on, in order to shorten the notation, we set . and we call .. the . of the Chow-semistable locus.
23#
發(fā)表于 2025-3-25 14:06:19 | 只看該作者
Drug-Induced Oral ComplicationsSo far, we have considered the action of . over Hilb., and we have restricted our attention to . and ., the Chow or Hilbert semistable loci consisting of connected curves. It is very natural to ask if there are Chow or Hilbert semistable points . with . not connected. In this chapter we will answer this question.
24#
發(fā)表于 2025-3-25 17:17:16 | 只看該作者
25#
發(fā)表于 2025-3-25 21:00:01 | 只看該作者
Singular Curves,The aim of this chapter is to collect the definitions and basic properties of the curves that we will deal with throughout the manuscript.
26#
發(fā)表于 2025-3-26 02:59:10 | 只看該作者
Combinatorial Results,The aim of this chapter is to collect all the combinatorial results that will be used in the sequel.
27#
發(fā)表于 2025-3-26 04:52:41 | 只看該作者
Preliminaries on GIT,In this chapter we review some basic material on Geometric Invariant Theory.
28#
發(fā)表于 2025-3-26 09:56:47 | 只看該作者
29#
發(fā)表于 2025-3-26 15:14:01 | 只看該作者
30#
發(fā)表于 2025-3-26 18:06:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 21:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新泰市| 涡阳县| 安龙县| 平山县| 沐川县| 临澧县| 阿尔山市| 高雄市| 旬邑县| 大连市| 桃江县| 涿鹿县| 浠水县| 喀喇| 武宁县| 昭苏县| 如东县| 崇左市| 石景山区| 咸丰县| 邻水| 沙雅县| 扎鲁特旗| 淮滨县| 茶陵县| 毕节市| 清水河县| 洮南市| 敦化市| 泌阳县| 扶沟县| 罗田县| 罗山县| 临猗县| 通州市| 浑源县| 峨边| 松桃| 咸丰县| 故城县| 昭觉县|